

Hydraulic Dredge Pilot Test Work Plan

Former North Water Street Manufactured Gas Plant Site Poughkeepsie, NY NYSDEC Site ID No. C314070

Central Hudson Gas and Electric Corp

August 26, 2020

Prepared for:

Central Hudson Gas and Electric Corp. 284 South Avenue Poughkeepsie, New York

Prepared by:

AECOM 125 Broad Street New York, NY 10004 aecom.com

Copyright © 2020 by AECOM

All rights reserved. No part of this copyrighted work may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of AECOM.

Table of Contents

1.	Introduction	5
	1.1 Background	5
	1.2 Pilot Test Objectives	6
	1.3 Work Plan Organization	
2.	Preliminary Pilot Test Activities and Determination of Test Areas	8
	2.1 Geotechnical Investigation	8
	2.2 Sediment Dewatering Treatability Study	9
	2.3 Identification of Equipment and Long Lead Items	9
	2.4 Determination of Test Areas	9
	2.4.1 Proof of HDPT Concept Plan	9
	2.4.2 Pilot Dredge Plan Within Central Area Footprint	. 10
	2.4.2.1 Area 2	
	2.4.2.2 Area 3	. 10
3.	Equipment and Operation	. 12
	3.1 Fixed Arm Excavator with High Solids HD Pump with Shroud	
	3.1.1 Equipment	
	3.1.2 Operation	
	3.1.3 Dredging Compliance/Completion Determination	
	3.2 Debris and Over-Sized Material Removal	
	3.2.1 Equipment.	
	3.2.2 Operation	
	3.3 Conveyance of Dredged Material to Dewatering Barges	
	3.3.1 Equipment	
	3.3.2 Operation	
	3.4 Dewatering of Dredge	
	3.4.1 Equipment.	
	3.4.1.1 Method 1 – Geotextile Tubes	
	3.4.1.2 Method 2 – Mechanical	
	3.4.2 Operation	
	3.4.2.1 Method 1 – Geotextile Tubes	
	3.4.2.2 Method 2 – Mechanical	
	3.5 Conveyance of Liquid from Dewatering Operation to WTP	
	3.5.1 Measurement of liquid flow	
	3.5.2 Equipment	
	3.5.3 Operation	
	3.6 Dewatered Dredge Material Transportation and Disposal	
	3.6.1 Equipment	
	3.6.2 Operation/Disposal Facility	
	3.7 Backfill Operation	
	3.7.1 Equipment	
	3.7.2 Operation	
	3.8 Existing On-Site Water Treatment Plant	
	3.8.1 Equipment	
	3.8.2 Operation	
4.	Implementation	
••		

	4.1	Proof of Concept	20
	4.2	Central Area	20
5.	Envii	ronmental Controls and Monitoring	22
	5.1	Perimeter Sheen Control System	22
	5.2	Control Actions	22
	5.3	Time-of-Work Administrative Control	23
6.	Regu	ılatory Approvals	24
7.	Pilot	Test Schedule	25
8.	HDPT Final Summary Report		
9.	Refe	rences	27

Figures

- Figure 1 Geotechnical Boring Locations
- Figure 2 Hydraulic Dredge Pilot Test Dredge Areas
- Figure 3 Conceptual Equipment Layout
- Figure 4 Excavator Profile
- Figure 5 Conceptual Shroud Configuration for the Hydraulic Dredging Pump
- Figure 6 Perimeter Sheen Containment System Season 3 Pilot Study Work Plan

Appendices

- Appendix A Geotechnical Investigation Boring Logs
- Appendix B Geotechnical Investigation Analytical Results
- Appencix C Treatability Study Results
- Appendix D Filter Test Results
- Appendix E Check Valve Information

1. Introduction

AECOM USA, Inc. (AECOM) has prepared this Pilot Test Work Plan (PTWP) on the behalf of Central Hudson Gas and Electric Corporation (CHGE) to implement an in-river pilot test at the former North Water Street Manufactured Gas Plant (MGP) site (site) located at 2 Dutchess Avenue, Poughkeepsie, New York. The purpose of the pilot test is to assess the applicability of hydraulic dredging (HD) with a submersible high-solids dredge pump for removal of impacted sediment at the site. This PTWP provides details of the HD Pilot Test (HDPT) elements and the approaches that will be used to evaluate the equipment, methodology, and control actions that will be undertaken in response to potential observation of site-related impacts (evidence of non-aqueous phase liquid [NAPL], sheen, turbidity, etc.). Sevenson Environmental Services (SES) will be subcontracted to perform the work outlined in this PTWP.

1.1 Background

The remediation of the site is being conducted pursuant to a Decision Document issued by the New York State Department of Environmental Conservation (NYSDEC 2016). The selected remedy includes upland and in-river remedial actions to remove or isolate remaining sources of MGP residuals and to remove accessible impacted materials from public areas, to the extent feasible. The in-river portion of the selected remedy includes:

- Removal of visual non-aqueous phase liquid (NAPL) impacted sediment areas within the Hudson River;
- Installation of an approximately near shore barrier wall to prevent further migration of NAPL into the river;
- Re-grading and capping of near shore areas where dredging is impracticable due to stability concerns associated with the steep shoreline and adjacent bulkhead; and
- Capping of utility corridors within the proposed removal areas.

In accordance with the site Decision Document, 7.4 acres of river sediment are targeted for removal, with planned dredging depths ranging from 2 to 13 feet below the existing sediment surface and a neat-line volume of approximately 51,000 cubic yards. The original plan for implementing the remedy, as presented in the Remedial Design/Remedial Action Work Plan (RD/RA Work Plan; AECOM 2018), involved mechanical dredging of impacted sediment within a containment cell fitted with permeable turbidity curtains.

In-water remediation activities commenced in the fall of 2018, following NYSDEC approval of the RD/RA Work Plan. Activities performed during Season 1 (November 26, 2018 to January 16, 2019) centered on remediation of the upland portion of the site and installation of the near shore barrier wall. A turbidity curtain with oil absorbent booms was deployed outboard of the barrier wall alignment as a water quality best management practice (BMP). In response to sheens that were observed during this construction activity, given the proximity of the work to a water intake for Poughkeepsie's' Water Treatment Facility (PWTF), the NYSDEC and other stakeholders (including the PWTF, the New York State Department of Health (NYSDOH) and the Dutchess County Department of Health) required the development of additional measures to control the release and migration of constituents of interest (COIs) as a pre-requisite to conducting dredging in Season 2.

To address the requirement to protect the public water supply, a number of enhancements were made to the existing containment cell design (referred to as the "moon pool") (AECOM, 2019). The moon pool design was revised to consist of an impermeable curtain extended to the full depth of the Hudson River and a double-row perimeter barrier system. Additional measures taken to address water quality concerns included revisions to the water quality monitoring program, including additional support/observation vessels and more rigorous in-river monitoring requirements, and performance of a dye study to aid the understanding of any potential contaminant migration.

While many elements of the revised water quality control measures were successfully implemented in Season 2 (August 19, 2019 to January 6, 2020), mechanical dredging could not be initiated due to tearing of the impermeable curtain during assembly of the moon pool. Based on the Season 2 construction observations it was determined that the site's water depth and hydrodynamic forces present significant constraints that make use of a moon pool with an impermeable curtain extending close to the sediment surface technically infeasible at this site.

Following Season 2, an assessment of alternative technologies was conducted to identify an alternative approach to mechanical dredging of impacted sediment within a moon pool containment cell. The assessment concluded that HD is expected to be technically implementable at this site, however additional data and information was recommended to confirm this conclusion. Thus, this HDPT is being conducted in order to determine the viability of HD to the full-scale removal of site sediment and if it will satisfy the remedial implementation criteria established by the NYSDEC, NYSDOH, and other project stakeholders.

All HDPT activities to be outlined in this PTWP will be conducted pursuant to the following NYSDEC approved plans, with some modifications as noted herein:

- Modification to the Water Quality Monitoring Plan (CHGE, 2019); and
- HDPT Water Supply Protection and Contingency Plan (AECOM, 2020) Approval pending

1.2 Pilot Test Objectives

The scope of the HDPT, as outlined in this PTWP, has been developed to achieve the following objectives:

- 1. Evaluate the capability of HD equipment to effectively remove and manage sediments within the footprint defined in the approved RD/RA Work Plan given the existing site conditions and the need to satisfy the established remedial implementation criteria. This includes the effectiveness of the HD process, controlling the release of site-related sheens and COIs, generated residuals, and debris removal.
- 2. Evaluate the material management processes including the sediment slurry conveyance to dewatering barges and the control of odor that may be generated.
- 3. Evaluate the dewatering technologies including the spatial needs, ability to scale to full-scale operations, management of dewatered material including stabilization, and the ability to process filtrate from the dewatering system.
- 4. Evaluate an alternative method to place backfill material within the footprint defined in the approved RD/RA Work Plan given the existing site conditions and the need to satisfy the established remedial implementation criteria.
- 5. Assess the requirements, equipment, spatial needs, and production rate for a full-scale operation.

1.3 Work Plan Organization

This work plan is organized as follows:

- Section 1 describes the purpose of the work plan and the work plan organization.
- Section 2 provides an overview of the preliminary HDPT activities and their results. Based on these results, this section discusses the areas in which the HDPT will be conducted.
- Section 3 presents the equipment and operation to be utilized during each step of the HDPT process.
- Section 4 discusses the implementation of the HDPT and how these results will be utilized to meet the objectives of the HDPT.
- Section 5 identifies the environmental controls and monitoring to be utilized during the HDPT.

- Section 6 discusses the HDPT regulatory requirements and permitting elements.
- Section 7 presents the HDPT schedule.
- Section 8 provides details of the report to be provided upon completion of the HDPT.
- Section 9 provides references cited in the PTWP.

2. Preliminary Pilot Test Activities and Determination of Test Areas

AECOM identified three information collection tasks to be conducted prior to the preparation of the PTWP. These information collection tasks include:

- Geotechnical Investigation;
- Sediment Dewatering Treatability Study; and
- Identification of Equipment and Long Lead Items

This Section summarizes the collected information and, utilizing this information, presents the areas where the HDPT will be conducted. The results of the Geotechnical Investigation and Sediment Dewatering Treatability Study were also used to aid in the selection of appropriate dredging and dredge material management equipment to be employed in the HDPT, as discussed in Section 3.

2.1 Geotechnical Investigation

Objectives for the selection of the three areas in which to conduct the HDPT include:

- Characterize geotechnical properties of sediment in an area outside of the impacted sediment footprint for initial proof of concept testing of the dredging equipment and approach;
- Characterize geotechnical properties of sediment in two areas within the footprint of the site's Central Area (CA) of impacted sediments, one deep and the other shallower, for conducting HD to the full depth of remediation approved by NYSDEC for those areas; and
- Identify locations of subsurface obstructions/debris and over-sized material (i.e. gravel) to test and assess the effect on HD operations and potential removal options during full-scale HD operations.

In order to meet these selection objectives, a geotechnical investigation (GI) of the CA was conducted in June 2020. **Figure 1** presents the GI sampling locations. This GI included split spoon borings to 14 feet within the sediment at locations, PSB 1, 2, 4, 5, 7, and 8. At PSB 3, refusal was encountered at 8 feet within the sediment. Vibracore samples were collected at PSB 6 and 9 for subsequent dewatering treatability studies as described below. With the exception of PSB 1, all sample locations were within the CA. All boring samples were monitored for volatile organic compounds by a Photo Ionization Detector (PID) and visual and olfactory observations noted for NAPL.

For each boring location, blow counts were recorded, and samples were collected at 2-foot intervals. These samples were tested for moisture content, Atterberg Limits and sieve analysis. The boring logs are included in **Appendix A** and the geotechnical analytical results are included in **Appendix B**.

The geotechnical results indicate:

- PSB 1 samples had no MGP odor or sheen, and the material at this location is soft, composed primarily of clay and sand
- PSB 2 samples had a slight MGP odor and sheen, and the material at this location is soft, composed primarily of clay and sand but with some gravel at its 2 to 4-foot interval
- PSB 3 samples had MGP odor and sheen, and the material at this location is stiff, composed primarily of tight clay and sand, with refusal encountered at 8 feet within the sediment
- PSB 4 samples had MGP odor and sheen, and the material at this location is soft, composed primarily of clay and sand
- PSB 5 samples had a moderate organic odor and no sheen, and the material at this location is soft, composed primarily of clay and sand

- PSB 7 samples had MGP odor and sheen, and the material at this location is soft, composed of clay and sand
- PSB 8 samples had MGP odor and sheen, and the material at this location is soft, composed of clay and sand

2.2 Sediment Dewatering Treatability Study

A sediment dewatering treatability study was conducted in June 2020 by Waste Stream Technology (a wholly owned subsidiary of SES). Samples collected from the GI were provided to the laboratory to perform bench scale testing utilizing the following technologies:

- High pressure filter press
- Gravity drainage geotextile tubes

The vibracore samples collected at locations PSB 6 and PSB 9 during the June 2020 geotechnical investigation were evaluated in this study. The results of the dewatering treatability study are presented in **Appendix C**.

The study evaluated the ability of the sediments to be dewatered through a bench-scale high-pressure filter system with polymer addition. The results show that the PSB 6 and PSB 9 sediments were able to be dewatered effectively by this method to over 70% solids.

Of the two samples, PSB 6 exhibited the most visible NAPL. Based on this, it was decided that this sample would be evaluated for dewatering through a gravity membrane system, to simulate a geotextile tube, and to assess the impact of the NAPL on the membrane's ability to concentrate the sediment. The results indicate that with polymer addition this sample was effectively dewatered to over 50% solids by this method.

The filtrates from the gravity membrane system and pressure filter tests on this sample were analyzed for the site's current NYSDEC State Pollution Discharge Elimination System (SPDES) Permit Equivalency parameters. The results of these analyses are presented in **Appendix D**.

Since the results of this study indicate that dewatering by both a geotextile tube and filter press method are viable, these methods will be included in the HDPT. The results of the treatability study were used to plan the spatial needs, quantities, and time frame of the HDPT in order to meet Objective 3 (evaluate dewatering technologies).

2.3 Identification of Equipment and Long Lead Items

HDPT equipment requiring long-lead times to acquire were identified and ordered to mitigate impact to the schedule of the HDPT. These items include:

- High solids HD pump, auger head and shroud
- Dredging excavator arm and extension long-stick required to reach the proposed depths of dredging

2.4 Determination of Test Areas

The HDPT will be conducted in three areas based on the results of the GI. The dredge areas are depicted on **Figure 2**. A proof of concept will be conducted in Area 1 outside of the CA followed by primary dredging in Area 2 and a secondary short-term dredge in Area 3 within the CA.

2.4.1 Proof of HDPT Concept Plan

The geotechnical analytical results for location PSB 1 (**Figure 1**), located outside of the CA, indicate that this sediment is a mixture of sand and clay which is a similar soil classification to those samples within the

CA. The PSB 1 boring log indicates that no visual and olfactory impacts were observed, no VOCs were detected by the PID, and no sheen was detected in any sample interval.

PSB 1 is, therefore, recommended as a suitable location for conducting the initial proof of concept for the HDPT operation as described below.

Conducting the proof of concept in this area will enable the HDPT to meet the following objectives:

- Evaluate the capability of HD equipment to effectively remove and manage sediments; and,
- Evaluate the material management processes including the sediment slurry conveyance to dewatering barges.

The depth of dredging in this area will be approximately 5 feet and the anticipated volume will be approximately 200 cubic yards.

2.4.2 Pilot Dredge Plan Within Central Area Footprint

2.4.2.1 Area 2

Once all HD operations are complete at the initial proof of concept area, and upon receipt of approval from NYSDEC, the HDPT would commence HD at Area 2 within the CA.

Based on the GI boring logs and geotechnical analytical results, it is recommended that the HDPT dredging site within the CA be at the PSB 2 sample location (**Figure 1**). The boring log for this location indicates that the sediment is slightly impacted with a light MGP odor and a slight sheen on the sediment, so this location is representative of the CA with respect to potential releases.

The 2-4-foot interval sample at PSB 2 exhibited the highest level of gravel at 48.8%. Although no debris was detected in the samples at this location, its high level of gravel will enable the HDPT to test and assess the following with the goal of meeting the project Objective 1:

- The effect of over-sized material on HD operations;
- The potential effectiveness of the HD process in controlling the release of site activity related sheens and COIs, as well as generated residuals; and
- The combined effectiveness of HD, including pump shroud(s), and water quality control measures developed in Season 2 were applied in satisfying the established remedial implementation criteria.

The depth of impacted sediments to be remediated in this area is 10 feet. The test dredge will be extended to an additional depth of approximately 3 feet for a total dredge depth of 13 feet. This will allow the system to be tested for conditions that represent the deepest extent of impacts to be removed. The sediment below the 2-4-foot interval at this location is a mixture of clays and sands, similar to the samples at the other locations assessed in the GI. HD operations in this area will also, therefore, enable the HDPT to meet the project objective for the determining the scalability of the HD system's removal and dewatering capabilities for the sand and clay mixtures to full-scale HD remediation at the site (Objective 5).

2.4.2.2 Area 3

Once all HD operations are complete at Area 2, schedule permitting, and upon receipt of approval from NYSDEC, the HDPT would commence HD at Area 3 within the CA.

Previous remedial investigations indicate that these locations are heavily impacted with NAPL. During the GI, vibracore samples were collected at these two locations, PSB 6 and PSB 9 (**Figure 1**) for subsequent assessment in sediment dewatering treatability studies. The samples were obtained at the 8-10-foot interval of the sediment and no obstructions were encountered in collecting these samples. The sediment from both samples was described as a mixture of clays and sands.

Based on these assessments, it is recommended that the secondary HDPT dredging site within the CA be at the PSB 6 location. The HDPT operations at Area 3 will enable the HDPT to test and assess the following with the goal of meeting Objectives 1 and 3:

• The potential effectiveness of the HDPT process in controlling the release of site-related sheens and COIs, as well as generated residuals;

• The combined effectiveness of HDPT, including pump shroud(s), and water quality control measures developed in Season 2, were applied in satisfying the established remedial implementation criteria; and

• The on-site water treatment system for processing filtrate from dewatering system.

It is anticipated that the HD in Area 3 will take place over one or two days. The extent of dredge depth will depend on the production rate of the HD acceptable to all parties and the control of COIs generated during the HD.

3. Equipment and Operation

This Section provides details on the equipment to be used for the HDPT and their operation. The conceptual layout for all equipment discussed in this Section is shown in **Figure 3**. The operations described below will include the necessary controls to prevent to the extent feasible dredged sediments and/or associated filtrate from re-entering the river.

The equipment listed below for each operation was selected based on the following:

- The experience of AECOM and SES in conducting hydraulic dredging projects
- The results of the June 2020 geotechnical investigation; to select the proper hydraulic dredging pump/auger head/shroud, and, consequently, the proper dredger and extended arm system
- The results of the July 2020 sediment dewatering study; to size the dewatering equipment for the HDPT
- The depth of the impacted sediments to be dredged in the HDPT
- The potential for debris removal
- The potential for turbidity and sheen releases

3.1 Fixed Arm Excavator with High Solids HD Pump with Shroud

3.1.1 Equipment

- **Dredge Excavator**: Sennebogen 875 E Material Handler
- **Custom Boom and Stick**: Customized boom and stick built specifically for hydraulic dredging at large depths
- Shroud: Custom. Details to be provided following fabrication at SES facilities
- **Spud Barge**: 45'x150'x9' (approximate) spud barge
- High Solids Pump: Bell 200 Dredging Pump
- Attendant Plant (Tugs & Push Boats)

3.1.2 Operation

Sediment removal will be performed with a Sennebogen dredge excavator mounted to a spud barge. The dredge excavator will be outfitted with a custom-built boom and stick designed specifically to reach the maximum dredge depth with appropriately sized attachments (**Figure 4**). The proposed dredge pump, a Bell 200, (**Figure 4**) has various cutterhead/suction designs. For this application, the traditional vane and teeth cutterhead and auger attachment will be used to develop a slurry with in-situ sediment, allowing the pump to extract and convey the sediment from the river bottom to the dewatering equipment. The pump assembly will be fitted with a shroud to control the turbidity released during the dredging operation. **Figure 5** presents a concept of the shroud design.

The dredge excavator will be outfitted with Trimble Machine Control (TMC). TMC is an advanced monitoring and positioning system and is capable of maintaining positional accuracy of +/- 6 inches horizontally and +/- 3 inches vertically. The dredge excavator will be equipped with

- Two RTK GPS beacons of known separation distance mounted on the machine's upper structure for positioning and heading;
- A boom inclinometer; and a

• Stick inclinometer.

The measurements taken by these sensors, combined with precision measured lengths between articulated joints, height of pump and the location of the main pin on the boom relative to the RTK GPS positional antenna, allows the GPS-equipped excavator to accurately determine the position of the cutting face and it's orientation in relation to bathymetry, dredging template, and previous cuts (sediment removal).

3.1.3 Start-up and Shut-down Procedures

The following start-up and shut-down procedures will be implemented for the dredging unit to prevent incidental releases. Prior to the commencement of any dredging activity, a tailgate health and safety (H&S) meeting will be held during which all activities planned for the day will be reviewed and their associated H&S issues and Task Hazard Assessments discussed. Then all monitoring and control systems included within the Water Intake Protection and Contingency Plan will be checked and verified to be functional, this will include communication with the observer on the Walkway Over the Hudson, communication with and positioning of the patrol boats, and an inspection of the perimeter sheen containment system. Similarly, all hydraulic dredging, dewatering and transfer piping systems will be inspected and verified to be functional. Once these verifications are satisfactorily completed, dredging operations will commence. Information to remotely access turbidity and fluorometer data will be provided to all concerned parties. The PWTF will be contacted prior to the initiation of all dredging activities, both to inform them of the impending work and to verify that the PWTF monitoring equipment is operating.

To prevent the back-flow of contamination to the river, the dredging piping system will include a check valve. Similarly, to minimize incidental releases, check valves will be installed on all dewatering and transfer pumping lines. The plan views in **Appendix E** show the proposed location for the two check valves and associated spec sheets. It is anticipated that each of the valves will be 8-inch in size.

At the shut-down of daily dredging operations, the hydraulic dredging pump will draw in river water to flush the dredge pump and piping system through to the dewatering operation. Two times the pipeline volume will be pumped to flush the pipeline (about 2,800 gallons total). Based on Sevenson's experience, this volume will be sufficient to satisfactorily flush the pump and associated piping. The dredge pump will be lifted from the river and secured within a dedicated containment pad on the dredge barge.

3.1.4 Dredging Compliance/Completion Determination

Pre-dredge, post-dredge and progress multi-beam bathymetric surveys will be performed prior to, during and after dredge operations. The pre-dredge survey will determine available volume to be removed and obstructions/debris. The survey results will also be used to establish the over-dredge required to achieve the target grades, given the accuracy of the HD equipment.

Progress surveys will be performed to monitor progress and to update the TMC with the latest dredge surface. Post-dredge surveys will be performed to record the final dredge surface. Should the post-dredge survey show any areas not cleared to the design grade, SES will return to these areas and resume dredging operations.

3.2 Debris and Over-Sized Material Removal

3.2.1 Equipment

- Dredge Excavator: Sennebogen 875 E Material Handler
- **Custom Boom and Stick**: Customized boom and stick built specifically for hydraulic dredging at large depths
- Spud Barge: 45'x150'x9' (approximate) spud barge

- **Orange Peel Grapple or Rake**: Grapple attachment for the Sennebogen 875 E, used to remove large debris from the river bottom.
- **Tugs and Push Boats**: 1,500 HP Work Boat to maneuver barges locally. Support boats for personnel transport and surveys. 2,000+ HP tugboats to move debris deck barge from work are to offloading area.

3.2.2 Operation

The HDPT dredge sites were selected to avoid the need for removal of debris and oversized material (D/OM) to the greatest extent. A pre-dredge bathymetric surface survey including side sonar scans will be conducted to identify the presence of any surface D/OM within the planned HDPT areas. The results of the survey and determination of surface D/OM will be provided to the NYSDEC prior to start of the HDPT. If the survey indicates that surface D/OM is present, the pump head will be relocated to an area where D/OM is not observed. If deemed necessary by the HDPT team (CHGE, AECOM, and SES) and NYSDEC, removal of sediment surface D/OM identified during the pre-operations bathymetric survey will be conducted prior to dredging operations in the specific area where the D/OM is unavoidable in the planned dredging areas, this material will be removed using the same dredge machine, the Sennebogen 875, as would be used for the dredging operations with the exception of using an "orange peel" grapple attachment instead of the hydraulic dredge pump. Below are photos of an "orange peel" grapple.

A similar approach of marking the D/OM location will be taken for D/OM observed at depth. The operator will potentially "feel" the debris while trying to dredge with the pump or the crew will see an increase in cutterhead pressure. If the operator "feels" the debris, the boom and stick may have a difficult time advancing the pump through or across the sediment bottom. Also, if the cutterhead teeth encounter debris, the hydraulic fluid that is used to operate the pump and cutterhead teeth will increase in pressure. A third indicator of debris would be a reduction in slurry flow measured with a flow meter (gallons per minute) on the barge where the dredge pipe surfaces onto the barge but before discharge into geotextile tubes or pumped to the press dewatering operations.

If the operator believes they have encountered debris, a debris target will be generated by marking the location with the GPS positioning software. D/OM encountered at depth during dredging operations in an area would be recorded and following the completion of dredge operations at this location, an assessment would be made by the HDPT Team, including NYSDEC, whether removal of this material is necessary. SES will return to the recorded D/OM locations to attempt removal during outgoing tides, should the HDPT team deem this work necessary. If D/OM is encountered that is too large to be removed with onsite equipment it will evaluated further by the HDPT team and NYSDEC to determine if the D/OM can remain in place.

Subsurface D/OM removal operations will be performed using the same setup as sediment removal operations with the exception of using an orange peel grapple attachment instead of the hydraulic dredge pump. The Sennebogen 875 with the grapple attachment will remove identified D/OM from the river bottom and place it on a deck barge positioned adjacent to the dredge barge. If or when the deck barge becomes filled with D/OM, it will be transported to the riverbank to be unloaded, processed, and properly disposed.

3.3 Conveyance of Dredged Material to Dewatering Barges

3.3.1 Equipment

- **Dredge Pump**: Bell 200 Dredging Pump with two attachments (cutter head and auger attachment)
- **Pipe**: 10" SDR 17 HDPE Pipe
- Booster: C9 DSC Booster Pump

3.3.2 Operation

Dredged material will be removed from the river bottom using the dredge pump, which will create a slurry of the targeted in-situ sediment and use suction to draw the material into the pump and through the dredge pipe towards the surface. The dredge pipe will be 10" SDR 17 HDPE pipe. A booster pump will be stationed on the dredge barge. As the material reaches the surface of the water, it will pass through the booster pump which will convey the material to one of the two dewatering operations at a time. The slurry will be pre-treated with the addition of ferric sulfate and sodium hydroxide into the slurry stream. The pre-treatment additives will be staged on the dewatering barge in 200 gallon "totes" which will have secondary containment.

3.4 Dewatering of Dredge

Two methods of dewatering will be evaluated during the HDPT, gravity dewatering using geotextile tubes (Method 1), and mechanical dewatering using a plate frame filter press (Method 2).

3.4.1 Equipment

3.4.1.1 Method 1 – Geotextile Tubes

The equipment for geotextile tube dewatering will be housed in dewatering scows measuring approximately 37'x150' and containing:

- 500 cubic yard (CY) geotextile dewatering tube(s)
- Polyblend unit
- Manifolds
- Sump area
- Pump

3.4.1.2 Method 2 – Mechanical

The configuration for the mechanical dewatering consists of the following equipment housed on a dewatering barge:

- Screening system for the removal of oversized material
- Mixing tanks
- Pumps

- Filter presses (two)
- Conveyor
- Generator
- Effluent tank

3.4.2 Operation

3.4.2.1 Method 1 – Geotextile Tubes

During the HDPT, dewatering of the sediment will be conducted by only one method at a time so that a dedicated assessment of that methodology can be made. To conduct the assessment of Method 1, the geotextile tube process, approximately 75 percent of the sediment from an area will be dewatered in this manner. This will enable the filling of the tubes which will achieve this method's greatest dewatering potential.

Method 1 for dewatering will be achieved with hopper scows, polymer addition, and geotextile tubes. The system consists of 500 CY geotextile dewatering tubes placed within the hopper scows. The scows will be modified to create sump areas at either end of the internal hopper. These sump areas will provide clearance for positioning a submersible pump to access seep water filtrate from the geotextile tubes as they are being filled. This filtrate will be pumped directly to the site's existing water treatment plant (WTP) for processing.

The dredge pump and booster pump will convey sediment to the geotextile tubes. Within the piping from the pump to the tubes, a polyblend unit will be used to introduce polymer into the excavated sediment to assist in the coagulation of solids and in dewatering within the geotextile tubes. As a geotextile tube becomes filled, a manifold system will be utilized to direct the slurry to another tube. Once a geotextile tube is filled, pumping into that tube will cease and it will be allowed to dewater for at least 24 hours. Once the geotextile tube is not releasing any significant additional water, the remaining free water will be pumped to the WTP and the scow containing the filled geotextile tube will be transported for disposal at a permitted facility.

As noted in Section 5.2, Item 6 of this Work Plan, the geotextile tube scows will be covered to the extent practicable for odor control.

3.4.2.2 Method 2 – Mechanical

Method 2 for dewatering will be achieved using mechanical processing, positioned on a deck barge. The dewatering barge will consist of a screening system for the removal of gravel, agitated mixing tanks, two filter presses, a conveyor, an effluent tank, and miscellaneous pumps and generators.

The dredge and booster pump will convey sediment to the screening system on the filter press barge which will remove gravel. Following this screening, the slurry will be sent to mixing tanks located on the dewatering barge. Screened material will be stockpiled on the deck barge or conveyed to an adjacent hopper scow. The mixing tanks will serve as holding tanks to regulate the flow of fine-grained slurry. This slurry will then be pumped to the filter presses which will utilize pressure to remove water from the dredged slurry, producing a "cake" of solids. As the filter cake exits the filter presses it will be collected by a conveyor staged under the presses and discharged into a hopper scow positioned adjacent to the dewatering barge. Filtrate from the presses will be pumped to the WTP. The filter cake and screenings will be transported offsite by scow for final disposal at a permitted facility.

To confirm integrity, the system conveying material between multiple barges will be filled with river water and pressurized using an air compressor. The pressure will be monitored to ensure there are not any leaks within the system. The testing of the pipeline system will occur before any dredging begins for each aspect of the project (i.e. before geotextile tube filling and before dewatering operations using the filter presses. In addition, secondary containment will be provided on the barge to prevent leaks from entering the river. In addition, this system will be located within the work area and carefully monitored by the support vessels. As noted in Section 5.2 Item 6 of this Work Plan, the filter cake scow will be covered to the extent practicable for odor control.

3.5 Conveyance of Liquid from Dewatering Operation to WTP

3.5.1 Measurement of liquid flow

Liquid flow to the WTP will be measured by a flow meter. The flow meter will be placed within the onsite WTP to provide quantitative measurements of flow entering the plant from the HDPT dewatering operations.

3.5.2 Equipment

- Flow meter
- Godwin transfer pump
- HDPE piping

3.5.3 Operation

Filtrate from the dredging and dewatering operations will be either temporarily held in an effluent tank located on the dewatering barge or pumped directly to the WTP. Water will be conveyed to the onsite WTP by a Godwin pump and HDPE pipe.

3.6 Dewatered Dredge Material Transportation and Disposal

3.6.1 Equipment

• **Scow**: 37'x150' Hopper Scow (approximate)

3.6.2 Operation/Disposal Facility

Dewatered sediment processing at the disposal facility may vary depending upon the dewatering method. For the geotextile dewatering method, the hopper scows will be filled with an intact geotextile dewatering tube upon arrival to the disposal location. Upon arrival of the scow, the facility will open the dewatering tube to access the dredged sediment. If upon examination the dredged sediment does not meet disposal requirements, stabilization will be conducted by the facility with Portland cement and/or Super Absorbent Polymer addition.

For the dewatered solids from the filter press system, the hopper scows will arrive at the disposal facility with dewatered filter cake. Upon arrival, the facility will remove the filter cake from the scows. If stabilization is required, operations will be similar to those detailed above for the geotextile dewatered sediments.

Foam (Rusmar Inc or similar) will be used to control odor on all scows containing geomembrane tubes, filter press solids, and scows transporting materials to offsite disposal facilities. Sufficient freeboard will be maintained above the sediment surface to prevent releases of foam to surface water. Scows transporting impacted material to offsite facilities will be covered with poly tarps to the extent practical for odor control.

3.7 Backfill Operation

3.7.1 Equipment

- Dredge Excavator: Sennebogen 875 E Material Handler
- Custom Boom and Stick: Customized boom and stick built specifically for work at large depths
- High Solids Pump: Bell 200 Dredging Pump

• Backfill Material Barge: 45'x150'x9' (approximate) spud barge

3.7.2 Operation

As discussed below, Areas 1, 2 and 3 will be backfilled with NYSDEC- approved material. CHGE will submit to NYSDEC for approval the required grain size and chemical analysis information from the proposed borrow source of this material. A fill source and material was previously approved by the NYSDEC for Season 2 and the fill for the HDPT is expected to be from the same source. The volume of backfill to be placed will be calculated using the pre-dredge bathymetric survey and dredge equipment GPS information.

3.7.2.1 Sacrificial Backfill

Three to six-inch lifts of sacrificial backfill will be placed in areas not dredged to the full PT design depth at the end of each day. Dredge production rates will be monitored daily to allow dredge activities to be halted and sacrificial fill placement to take place, if needed. The sacrificial backfill will be placed at the mudline with a small (1.5 - 3.0 CY) clamshell bucket. The backfill material and equipment will be staged on a separate material barge and equipment barge. The volume of required backfill will be calculated based on the real-time dredging positioning software that will be utilized on-board the hydraulic dredging barge. This program will define the location of the dredging in X, Y and Z coordinates, which will then enable the calculation of the volume, and the location of placement, of the sacrificial backfill material. The sacrificial backfill equipment and material barges will be present in the work area from the start of the PT activities.

3.7.2.2 Backfill

The equipment to place sacrificial backfill as discussed in Section 3.7.2.1 above will be on site and will be utilized for backfill operations. The volume of required backfill will be calculated based on the pre-dredge bathymetric survey and real-time dredging positioning software that will be utilized on-board the hydraulic dredging barge. This program will define the location of the dredging in X, Y and Z coordinates, which will then enable the calculation of the volume, and the location of placement, of the backfill material. The backfill material will be staged on a separate material barge.

A post-backfilling bathymetric survey will be conducted in Areas 1, 2, and 3. If the survey indicates that backfilling has not met the design elevations across the dredged area, backfilling will resume to meet those elevations.

As part of the HDPT, efficiency of placement of the backfill material by means of a hydraulic pump at the mudline will be conducted to assess its viability for full-scale remediation. The hydraulic pump will be connected to the custom boom and stick and the Sennebogen excavator as will be done for the hydraulic dredging. For this placement of material, a different pump and conveyance pipe will be used than the one used for hydraulic dredging to prevent any cross-contamination of the backfill material. It is anticipated that the material for placement by this method will be less than ³/₄ inch nominal to facilitate pump operation. In the event this method proves inefficient, an alternate means to place backfill will be evaluated and discussed with the NYSDEC prior to implementation.

3.8 Existing On-Site Water Treatment Plant

The on-site Water Treatment Plant (WTP) is designed to operate at an average of 250 GPM, with a maximum flow rate of 300 GPM.

3.8.1 Equipment

- 180,000-gallon modular equalization tank
- (3) 18,000-gallon weir tanks with polymer addition for particle settling
- (4) 36 inch-diameter sand filters
- (6) 48 inch-diameter carbon adsorption tanks
- Dual 6-bag filter system

- (4) 21,000-gallon effluent holding tanks
- Effluent flow meter
- Polymer feed system
- Instrumentation and controls

3.8.2 Operation

The WTP's unit treatment operation processes were selected to treat MGP parameters. The system includes factors of safety and redundancies to treat the planned flow rate. The filtrate from the dewatering operations will be pumped to the WTP's modular equalization tank after which polymer will be blended with the water through an in-line static mixer. The water will then be conveyed to the system's weir tanks which will facilitate precipitation. The weir tank effluent will then be treated through sand filtration, carbon adsorption for organics removal, and residuals bag filtration. As per the facility's SPDES Permit, the final effluent will be held each day for the first 7 days of operation until it is tested for compliance with the Permit. Three effluent holding scows, each with a capacity of 200,000 gallons, will be provided during the HDPT to augment the system's existing 84,000 gallons of effluent holding tankage and provide a safety factor and redundancy. These scows will be staged within the work zone. To provide a factor of safety, each scow will only be filled with approximately 175,000 gallons (87.5% capacity). The treated water will be discharged to the Hudson River as per the facility's project approved SPDES Permit.

Solids generation in the equalization tank and the weir tanks will be monitored, tested and disposed in permitted facilities.

Consideration for 24-hour operation of the WTP may be part of the pilot test evaluation to best align its operations with the dredging and filtrate production while meeting SPDES Permit conditions. A WTP operator will be present at all times while the WTP is in use to ensure that the treatment unit operations are not adversely impacted by the hydraulic dredging rates and that the WTP operates in accordance with its SPDES Permit.

During cold weather additional measures will be taken to prevent freezing of water in the lines. The polymers used to promote flocculation are not as effective during colder weather, additional polymer will be used to offset the lower efficiency. The polymer storage totes will be heated to a minimum of 50 degrees during the colder months using a heating blanket. Heat tracing with a 120-volt electric heating cable will be utilized on all applicable WTP pipes. An automated pump recirculation or additional manpower will be used as needed to recirculate water through pipes that cannot be heat traced. Pipelines that can be drained at the end of the workday will be drained and potentially evacuated with low pressure compressed air during cold weather.

4. Implementation

One week prior to the mobilization of the HDPT equipment to the site, CHGE will notify NYSDEC, NYSDOH, Dutchess County Department of Health, PWTF, and all other stakeholders of the planned mobilization date. A pre-dredge bathymetric survey will be conducted to evaluate the initial dredge elevation as well as oversized material/debris in Areas 2 and 3. The equipment will be set up using the barge configuration shown on **Figure 3** and the perimeter sheen containment system as shown on **Figure 6** and discussed in Section 5.1 will be deployed.

4.1 Proof of Concept

The HDPT will begin in Area 1 for a proof of concept which will enable the evaluation of the hydraulic pump control and effectiveness under depth, flow, and sediment conditions without the presence of NAPL. During the proof of concept, an evaluation of the equipment and process will occur at each stage of work as described in Section 3. At this location sediment will be removed to a depth of about 5 feet using the hydraulic dredging pump and shroud system detailed in Section 3.1, transferred to the dewatering equipment, and dewatered. It is anticipated that approximately 200 cubic yards of sediment will be dredged from this location. During this time, assessments will be made regarding the ability to maintain pump control accuracy in vertical and horizontal planes, the dredge depth accuracy, and variability in pumping rates. Water quality monitoring, discussed in Section 5, will be conducted by AECOM.

The sediment will be dewatered using the geotextile tubes and mechanical dewatering. The liquid from the dewatering operation will be transferred to the WTP for processing. The dredged volume will be confirmed with a post-dredging bathymetric survey and GPS data from the dredge pump. Area 1 will then be backfilled utilizing the backfill operations discussed in Section 3.7.

4.2 Central Area

Upon receipt of approval from NYSDEC, the HDPT will progress to Area 2 within the CA as discussed in Section 2.4.2.1. Dredging will commence at a low pumping rate, the starting flow rate is anticipated to be approximately 900 GPM. Based on the results of dredging, dewatering, filtrate treatment operations and release control at this rate, the dredging would be increased in stages to a maximum of 2,500 GPM, which is the rate that would be used in full-scale hydraulic dredging remediation. It is a critical element of the HDPT to attempt to achieve and maintain full-scale dredging operation rates during a portion of the HDPT. The duration of hydraulic dredging will be adjusted such that it does not adversely impact the operation of the WTP. The increase in pumping rate will be monitored to ensure the HDPT Water Supply Protection and Contingency Plan (AECOM 2020) Level II or Level III response is not triggered. Work will stop if uncontrolled sheen or turbidity in exceedance of the action levels is present outside of the perimeter sheen containment system. These conditions will be treated as a release and notification will be made to NYSDEC, PWTF, and all required stakeholders. The observations will be discussed with NYSDEC, and any changes to the procedure will be evaluated. Dredging will resume upon approval from NYSDEC.

During the dredging, the following will be evaluated in support of meeting Objective 1 (evaluate the capability of HSHD equipment):

- Test and assess the hydraulic dredging pump system;
- Test and assess the ability of the barge-mounted excavator with arm extension to accommodate the hydraulic pump system;
- Assess the capability and scalability of hydraulic pumping system components;
- Test and assess potential impact of debris and over-sized material on HDPT operations;
- Test and assess the capability of the hydraulic pump to accurately remove and manage sediment within the CA areas (footprint defined in the approved RD/RA Work Plan);

- Test and assess the effectiveness of the hydraulic pump and water quality control measures in satisfying the established remedial implementation criteria; and
- Conduct field assessment of dredge completeness determination methodology (i.e. GPS, bathymetry, visual, olfactory).

The dredged sediment will be conveyed to the dewatering systems beginning with the geotextile tube. During this time, the following will be evaluated in support of meeting Objective 2 (evaluate material management processes):

- Test and assess solids slurry conveyance to dewatering barges;
- Test and assess the ability of hydraulic pump to delivery high solids sediment to either shore-side or barge-mounted dewatering plants;
- Assess odor generated/control.

The hydraulically dredged material will be dewatered as discussed in Section 3.4. The liquid obtained from the dewatering will be transferred to the WTP for processing. This process will be evaluated for the following in support of meeting Objective 3 (evaluate dewatering technologies):

- Evaluate dewatering technologies;
- Determine spatial needs for dewatering and location;
- Test and assess dewatered material management; and
- Test and assess wastewater treatment.

Placement of the backfill will be measured using a final bathymetric survey. The following will be evaluated in support of meeting Objective 4 (evaluate backfill placement):

- Test and assess effectiveness of alternate backfill placement methodology;
- · Test and assess the impact of sacrificial fill on productivity; and
- Confirm the type of backfill to be used for full-scale remediation.

Upon completion of Area 2, and receipt of approval from NYSDEC, HDPT activities will commence in Area 3 with dredging in this area to the remediation depth of 13 feet within a prescribed footprint. This is the maximum required depth for any area to be remediated. It is anticipated that approximately 1,050 cubic yards of sediment will be dredged from this area.

The results of the HDPT will be evaluated and assessed to determine the requirements and production rate for a full-scale remediation (Objective 5). To do this, the following will be evaluated:

- Determine the availability of hydraulic dredging equipment and determine customization requirements needed for full-scale implementation;
- Assess the capability and scalability of hydraulic dredging system components;
- Determine whether sediment management and dewatering technologies are scalable to full-scale hydraulic dredging remediation at the site;
- Test and assess the logistics of backfill storage and delivery to placement area;
- Estimate the backfill quantity needed for full scale remediation; and

• Estimate equipment, ancillary infrastructure requirements, and production rate for full-scale operations to determine the total number of seasons for the full-scale hydraulic dredging -based remediation, including the capping components for the shoreline slopes and the utility alignments and the final restoration work, based on pilot study results.

5. Environmental Controls and Monitoring

5.1 Perimeter Sheen Containment System

A perimeter sheen containment system (perimeter system) consisting of a double barrier between the designated work area and other users of the Hudson River will be installed prior to the commencement of the HDPT. The perimeter system that would be utilized for the HDPT will consist of a double row of 18-inch oil boom, connected to the existing anchor block buoys, with a row of absorbent sausage boom between the 18-inch oil booms, and a row of sausage boom connected on the in-board side of this system, as shown in **Figure 6**.

A gate will be installed on the western arm of this perimeter system (parallel to the main river flow direction), similar to the gate used during Season 2, to facilitate vessels (tugs, material scows, etc.) to enter and exit the work area.

The perimeter system will be along the same alignment as was utilized for Season 2, which will be approximately 100 feet riverward of the farthest areal extents of the dredging.

5.2 Control Actions

Control actions may be used proactively or in response to detection of sheen or exceedances of turbidity limits, and the appropriate action will depend on the extent and intensity of the event triggering the known or expected generation of sheen or turbidity. In general, the control actions include, in order of preference:

- Application of absorbent materials and bioremediation agents. Absorbent materials will be deployed to physically remove sheens to the extent practicable. Use of bioremediation agents, provided use is consistent with manufacturer directions, has been approved by the NYSDEC. Use of bioremediation agents may be employed to mitigate sheen concurrently with the use of absorbent materials. This combined approach is anticipated to reduce the likelihood of sheen migrating toward the perimeter system.
- 2. Use of patrol boats inside the perimeter system. During the HDPT, two patrol boats are proposed to be positioned inside the perimeter system. These patrol boats will respond as directed, and when needed, to any sheens observed. Use of absorbent booms by the patrol boats will initially be the first response action for any sheen observed. If this is not sufficient to control the sheen, bioremediation agents and/or additional oil absorbent materials (such as temporary placement of floating socks/booms, pom-poms, etc.) will be deployed.
- 3. Use of a patrol boats outside the perimeter system. During the HDPT, two patrol boats are proposed to be positioned outside the perimeter system. These patrol boats will employ the same response measures as the patrol boats inside the perimeter barrier. If the sheen is not fully controlled within the first 20 minutes after observation, which would constitute a reportable spill, notifications to interested parties will be made in accordance with the HDPT Water Supply Protection and Contingency Plan (AECOM, 2020). In addition, the patrol boats will be equipped with handheld turbidity monitors to provide additional turbidity measurements to the permanent locations. Handheld units will be utilized in all dredge areas of the HDPT.
- 4. **Monitoring.** Routine monitoring will be employed for the purpose of identifying potential COI releases as quickly as possible, and then limiting these releases to the smallest possible area within the work zone in order to maximize the effectiveness of mitigation and clean-up actions. Monitoring will be conducted in accordance with the RD/RA Work Plan (AECOM, 2018), the Modifications to the Water Quality Monitoring Plan (CHGE, 2019) and the HDPT Water Supply Protection and Contingency Plan (AECOM, 2020).
- Operations shutdown. Level II Alert Conditions, in some circumstances, or Level III Action Conditions resulting from site operations will result in shutdown of site operations in accordance with the HDPT Water Supply Protection and Contingency Plan (AECOM, 2020). Dredging will not

resume following a Level II Alert Condition or Level III Action Condition until NYSDEC has reviewed any relevant data regarding the event and concurred that work may resume.

 Odor Control. To mitigate odor releases from the HDPT operations, the dewatering solids barges will be tarped to the extent practicable. In addition, as necessary, NYSDEC-approved odor control materials and bio-agents will be applied to the dewatered solids within their respective scows.

The project objective is to conduct the work with no release of sheen or exceedances of turbidity action limits beyond the perimeter system. To achieve this objective, response actions will be initiated in the event sheen or exceedance of turbidity alert limits is detected inside the perimeter system. For sheen, this will consist of patrol boats responding to the area of the observed sheen and deploying absorbent materials and/or bioremediation agents, as appropriate based on the extent and intensity of the sheen. For turbidity, responses may include temporary suspension of work and/or modification of work procedures. The HDPT Water Supply Protection and Contingency Plan (AECOM, 2020) provides details of the responses that will be implemented as a result of Level II or Level III response levels.

5.3 Time-of-Work Administrative Control

In addition to the physical procedures and related observations described above, an administrative control will be enforced at all times (including during production work after startup evaluations have been completed) to limit sediment-disturbing work to times when sufficient daylight remains for the visual observer(s) to complete their work.

In general terms, sediment-disturbing work will be limited to the time between dawn and one hour before dusk. Dawn and dusk are defined as the beginning and end of civil twilight time at Poughkeepsie. As these times change each day, the specific times for dawn, dusk and stop-work for sediment-intrusive activities will be included in daily site briefings. Additionally, weather conditions such as cloud cover can obscure the sky and may cause insufficient light for observations at a time later than dawn or earlier than dusk. In the event such conditions are known or predicted to occur, the project team will establish later start-work and/or earlier stop-work times as appropriate to the conditions, but never earlier than the nominal dawn time or later than one hour before the nominal dusk time for the day.

As this relates to specific types of sediment-disturbing work, the following sediment-intrusive work will not be permitted after the daily stop-work time and at no time within one hour of dusk:

- Dredging A new dredge cycle may not be started after the stop-work time for intrusive activities.
- Dredge barge relocation No work that requires releasing or initiating anchorage/spudding will be permitted after the daily stop-work time for time-limited activities.

6. Regulatory Approvals and Notifications

Regulatory approvals, more specifically the Work Plan, for conducting the HDPT will be required from NYSDEC and NYSDOH.

Following receipt of approvals, notification will be made to the USACE with regard to the change in Means and Methods associated with the HDPT prior to commencing work.

Prior to the start of work, information to remotely access turbidity and fluorometer data will be provided to all parties.

7. Pilot Test Schedule

The schedule for the HDPT is as follows:

- Install Perimeter Sheen Control System and in-river monitoring equipment late August/early September 2020
- Commence HDPT in Area 1 late September/early October 2020
- Complete all HDPT activities in Areas 2 and 3 late November/early December 2020
- Submit Final HDPT Summary Report to NYSDEC on or about February 15, 2021

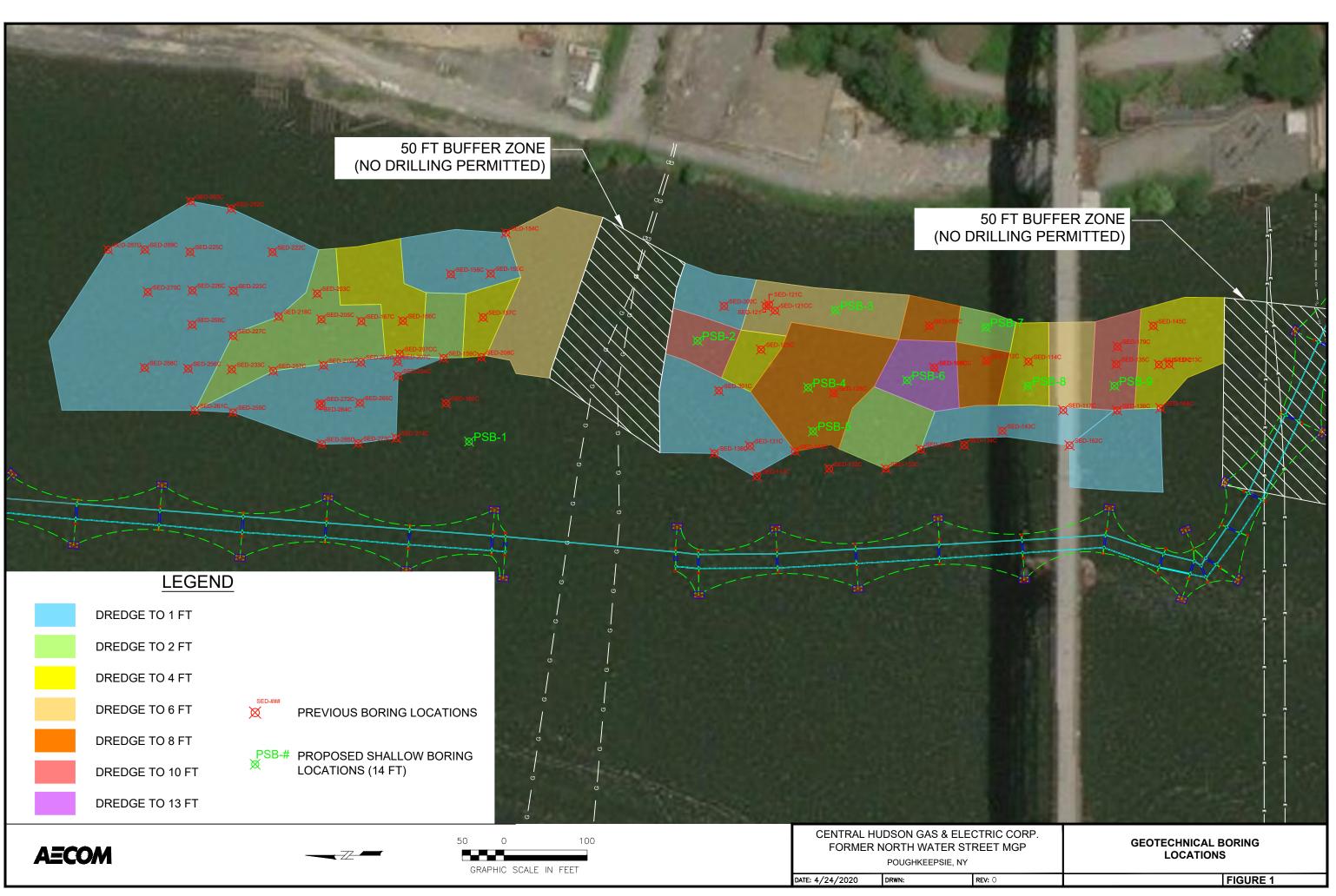
8. HDPT Final Summary Report

Following the completion of the HDPT, a report will be prepared summarizing:

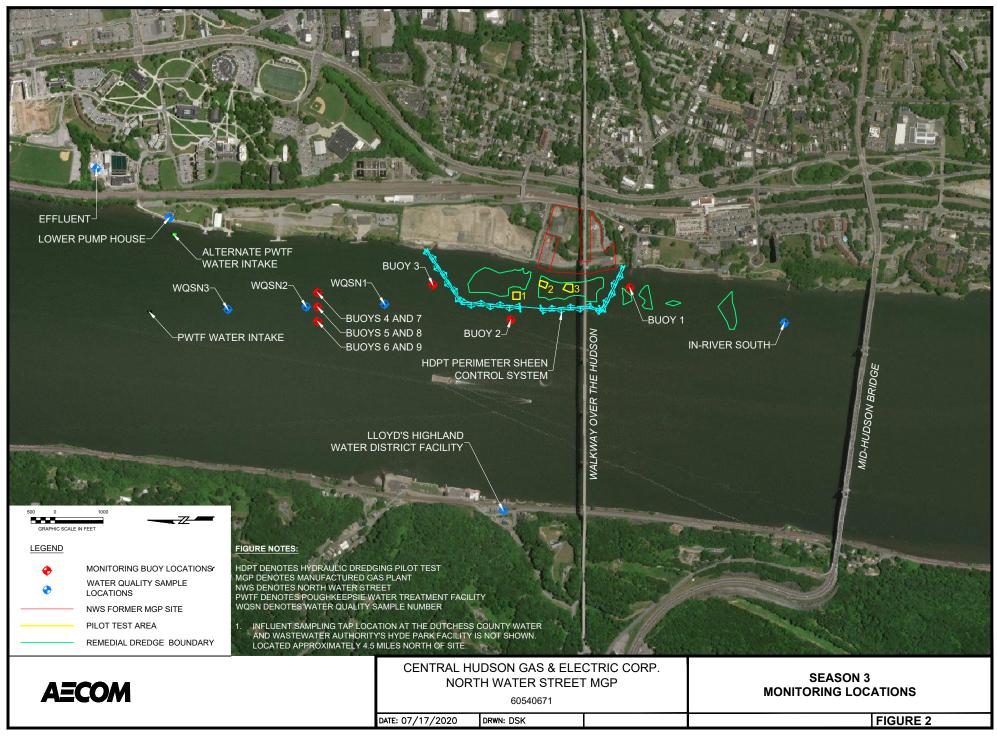
- Field activities
- Adequacy of environmental controls
- Equipment performance assessment
- Overall operational and technical approach assessment / lessons learned
- Dredging productivity
- Sediment dewatering methodology comparisons
- Filtrate management
- Solids management
- Odor management

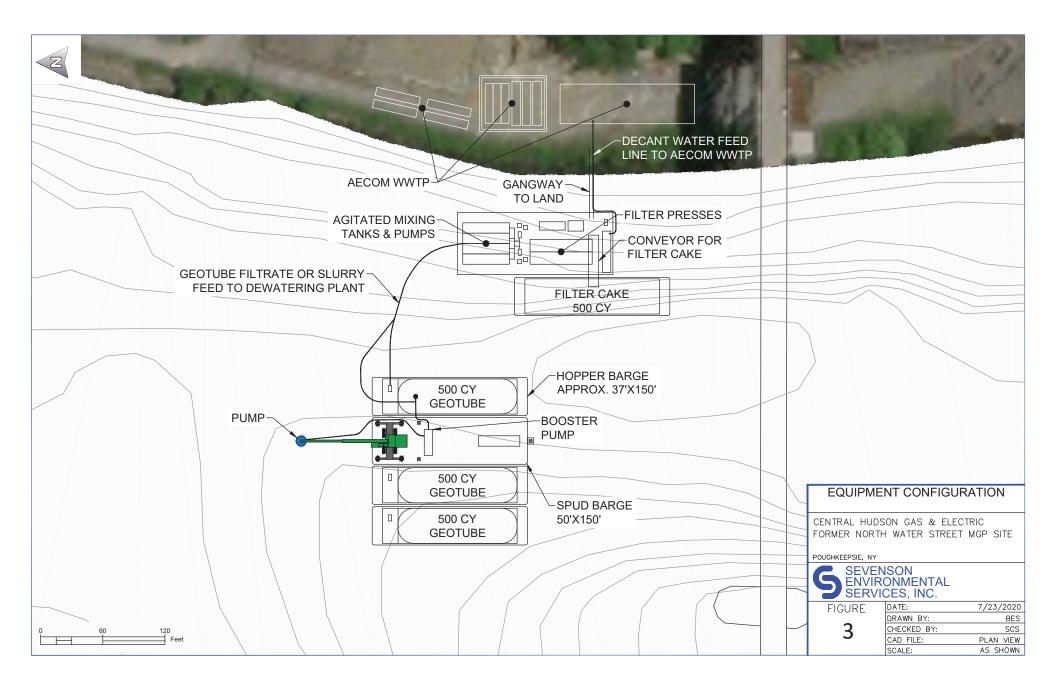
The results and findings of the HDPT will be discussed against the five objectives presented in Section 1.2 of this Work Plan. The report will provide conclusions and recommendations for full scale implementation of HD, assessing the processes and components for such implementation as well as the associated capital and operation and maintenance costs.

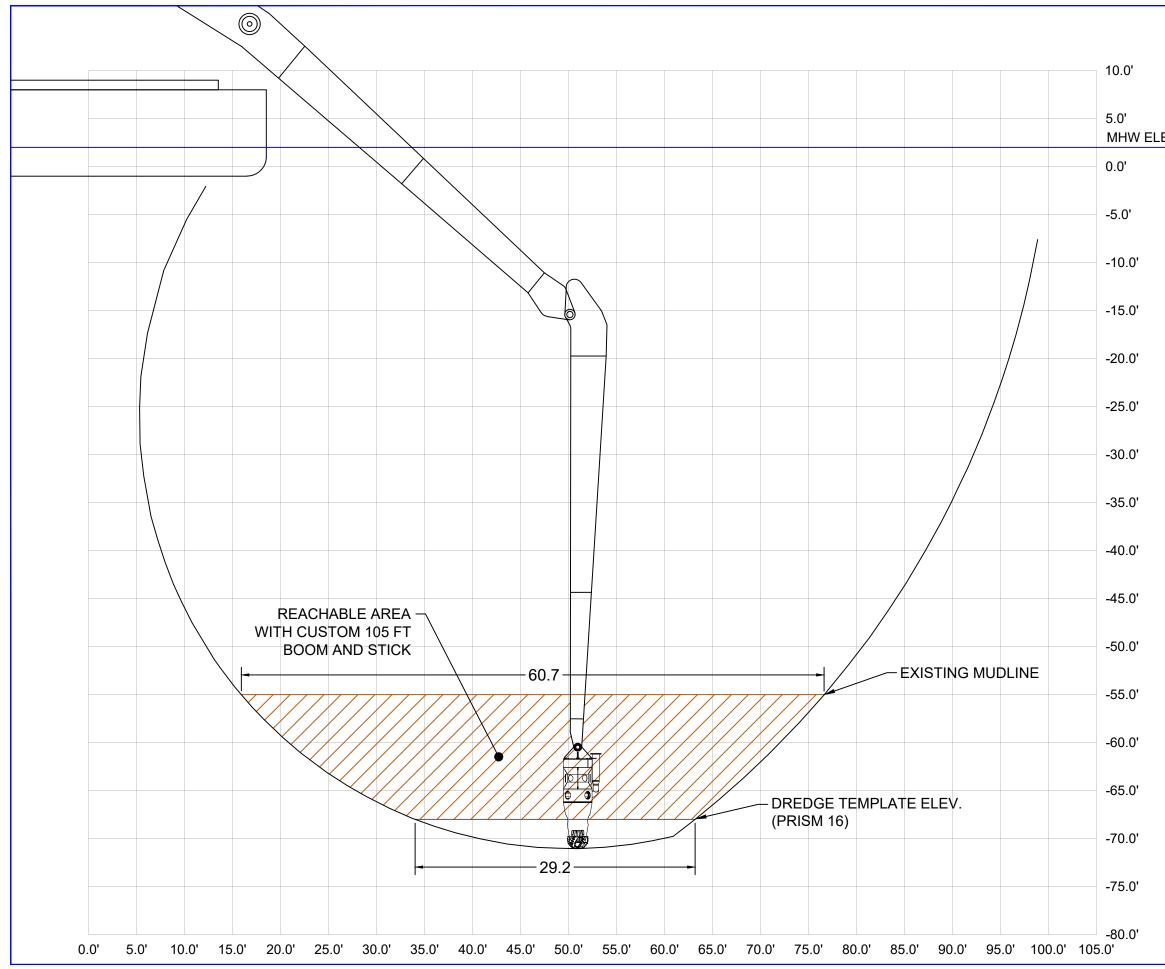
9. References


AECOM 2018. Remedial Design/Remedial Action (RD/RA) Work Plan. Former North Water Street MGP Site. Poughkeepsie, New York. August 2018.

AECOM 2020. Water Supply Protection and Contingency Plan. Former North Water Street MGP Site. Poughkeepsie, New York. July 2020.


CHGE 2019. Modification to the Water Quality Monitoring Plan. Former North Water Street MGP Site. Poughkeepsie, New York. 2019.


NYSDEC 2016. Decision Document. Former North Water Street MGP Site (Site No. C314070). Poughkeepsie, New York. March 2016.


Figures

File: C: Users \darrell.kennedy.NM\/AECOM Directory\NWS MGP - General (1)\910 CAD\20 SHEETS\Water Quality Monitoring\CHGE Water Quality Sample Locations-Season 3.dwg Layout: Monitoring Locations User: Darrell.Kennedy Plotted: Jul 17, 2020 - 1:18pm Xref's:

NOTE: CHART SHOWN IS FOR DREDGE PRISM 16 WITH A 13 FOOT CUT THICKNESS						
	10	20 Feet				
EXCAVATOR PROFILE						
CENTRAL HUDSON GAS & ELECTRIC FORMER NORTH WATER STREET MGP SITE						
POUGHKEEPSIE, NY SEVENSON ENVIRONMENTAL SERVICES, INC.						
FIGURE	DATE:	6/24/2020				
Λ	DRAWN BY: CHECKED BY:	BES SCS				
4	CAD FILE:	SITE LAYOUT				
	SCALE:	AS SHOWN				

MHW ELEV. 2.0' (NAVD 88)

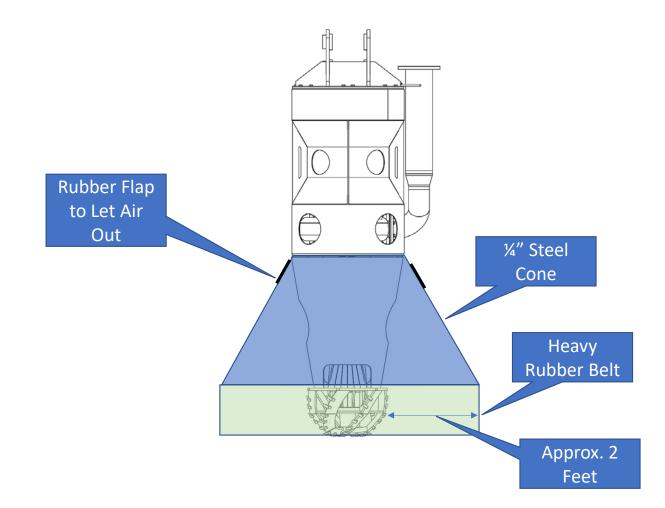
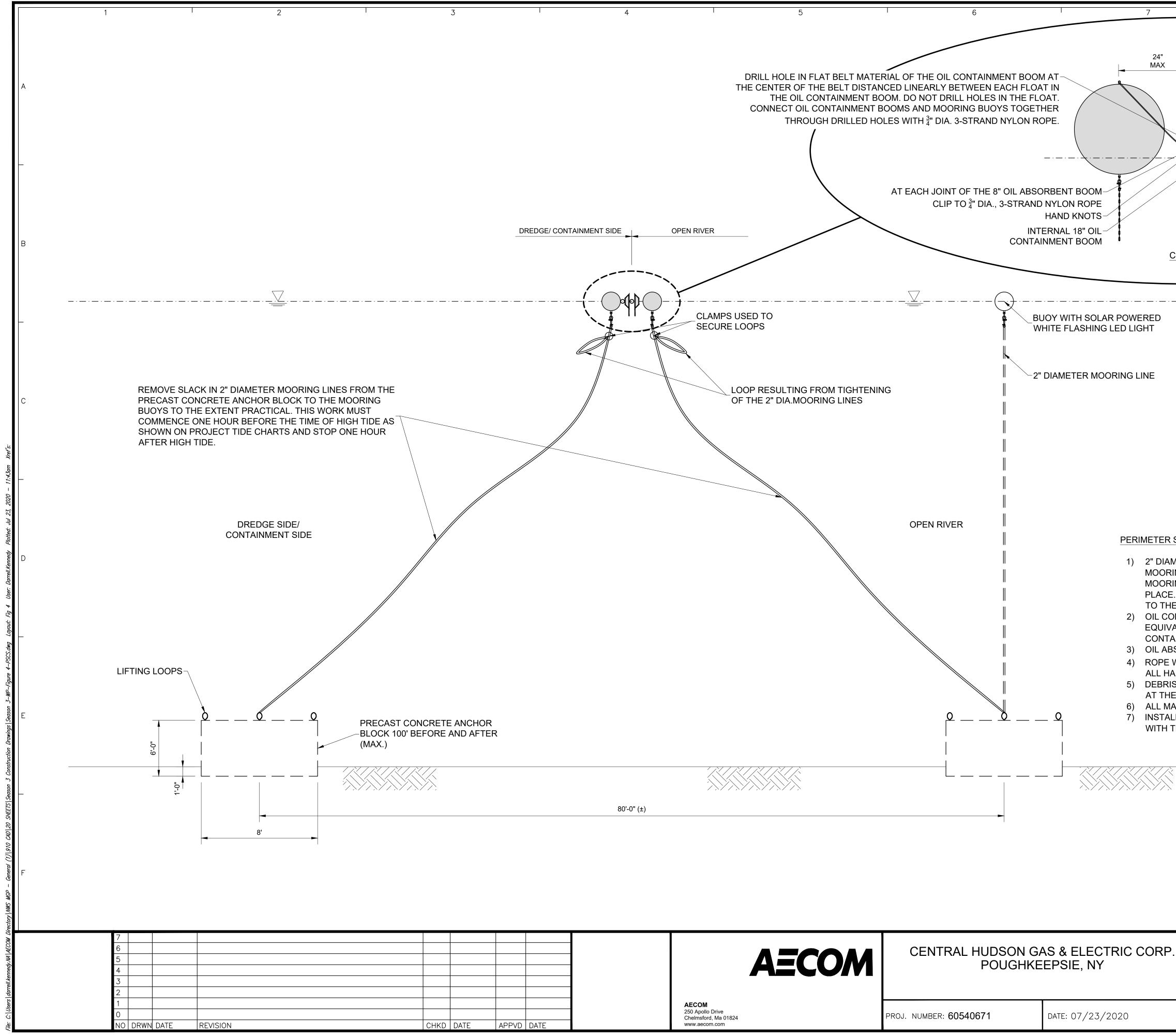



Figure 5 - Conceptual Shroud Configuration for the Hydraulic Dredging Pump

		л. Г
	8 9	
- -	36" 18" MAX MAX	
	³ / ₄ " DIAMETER 3-STRAND NYLON ROPE. 12,000 POUND	А
	BREAKING STRENGTH	
	HAND KNOTS	
	EXTERNAL 18" OIL CONTAINMENT BOOM	
	AT EACH JOINT OF THE 8" OIL ABSORBENT BOOM CLIP TO $\frac{3}{4}$ " DIA., 3-STRAND NYLON ROPE	
	i	В
CONNEC	CTION DETAIL	
	· _ · _ · _ · _ · _ · _ · _ · _ · _ · _	
		_
		С
		_
SHEEN	CONTAINMENT SYSTEM NOTES:	
		D
RING BU	MOORING LINES, PRECAST CONCRETE ANCHOR BLOCKS, 30" YELLOW OYS, SHACKLE AND SWIVEL CONNECTIONS FROM MOORING LINES TO	
	OYS, AND SOLAR LIGHT BUOYS WERE INSTALLED IN SEASON 2 AND LEFT IN DIL CONTAINMENT BOOMS AND OIL ABSORBENT BOOMS WILL BE CONNECTE	Đ
	ING ANCHORING SYSTEM LEFT IN PLACE FROM SEASON 2. MENT BOOM WILL BE 18" HEIGHT, 175 OUNCE PVC BELTING OR CM APPROVE	D
ALENT.	HOLES ARE NOT PERMITTED TO BE DRILLED INTO THE FLOATS OF THE OIL T BOOM.	_
BSORBE	NT BOOM WILL BE 8" DIAMETER AND HAVE JOINTS EVERY 10 LINEAR FEET.	
	$E^{\frac{3}{4}"}$ DIAMETER 3-STRAND NYLON ROPE. 12,000 POUND BREAKING STRENGTH OTS WILL BE BOWLINE KNOTS OR EQUIVALENT SAILING KNOTS.	
	IER BOOM WILL BE INSTALLED ALONG THE EXTERIOR OF THE SYSTEM ONLY EST OF THE CM IN WRITING.	/
ATERIA	LS WILL BE SUBMITTED TO CM APPROVAL. N, INSPECTION, AND MAINTENANCE WILL BE CONDUCTED IN ACCORDANCE	E
	ECIFICATIONS.	
~		
`		
		F
		DRAWING NUMBER:
	PERIMTER SHEEN CONTAINMENT SYSTEM	FIG 6
	SEASON 3 PILOT STUDY WORK PLAN	0
	FORMER NORTH WATER STREET MGP	SHEET NUMBER: 1 of 1
		REVISION 0

Appendices

Appendix A Geotechnical Investigation Boring Logs

Client:	Central Hu	dson Gas &	Electric		Hole Site:	5"		Boring ID:	PSB-1
Project Number:	60543645			Drilli	ng Method:	Split Spoor	า	Boring Interval:	0-14 ft
Site:	North Wate	er Street MG	βP	D	rilling Fluid:	Water		Page #:	1 of 1
Project Manager:	George Lea	ahy		Location	n (easting):				
Drilling Co.:	Atlantic Te	sting Lab (A	TL)	Location (northing):				Weather:	Partly Cloudy
Drill Rig:	CME75			Тор	o of Boring:	: 60.25 ft		Start Date:	6/2/2020
Driller:	M. Childs			Depth	h of Boring:	14 ft		End Date:	6/2/2020
Logged By:	D. Kenned	у			r Elevation:			QC Initials:	
				Тс	op of Rock:	Not Encou	ntered	QC Date:	
Depth	Blow Count per 6 inches	Sample Type	Lab Sample	Recovery	Moisture	ald	nscs		on of Material/ n of Material
Feet				Inches		ррт			
0.5	WOR					0.0		Very soft, wet, dar	
1.0	WOR	SS	-	24	Wet	0.0	ML	sand, no odor, no	sheen
1.5	WOR					0.0			
2.0	WOR					0.0			
2.5	WOR					0.0			k grey SILT, trace
3.0	WOR	SS	-	24	Wet	0.0	ML	sand, small (penn	. ,
3.5	WOR					0.0		pieces, no odor, n	o sheen
4.0	WOR					0.0			
4.5	WOR					0.0		SAA	
5.0	WOR	SS	-	24	Wet	0.0	ML-CL	@5 very soft, wet,	• •
5.5 6.0	WOR					0.0		CLAY, trace organ	nics, no odor, no
	WOR					0.0		sheen	
6.5 7.0	WOR					0.0		Very soft, wet, dar	
7.5	WOR	SS	-	10	Wet	0.0	ML-CL		l debris pieces, no
7.5 8.0	WOR WOR					0.0 0.0		odor, no sheen	
8.5								Vary aaft wat da	k grey CLAY with
9.0	WOR WOR					0.0 0.0			ace organic matter
9.5	WOR	SS	-	22	Wet	0.0	CL	in bottom 4 inches	•
10.0	WOR					0.0		sheen	, 110 0001, 110
10.5	WOR					0.0		SAA	
11.0	WOR					0.0		5,01	
11.5	WOR	SS	-	24	Wet	0.0	CL		
12.0	WOR					0.0			
12.5	WOR					0.0		SAA, trace shells,	trace organic
13.0	WOR	00		0.1	147.1	0.0			e plasticity, no odor,
13.5	WOR	SS	-	24	Wet	0.0	CL	no sheen	. ,,,
14.0	WOR					0.0	1		
			-					Bottom of E	Boring @ 14 ft

S3

SS

ST

R

AECOM

Geologic Log

Sample Types:

Soil Descriptors:

 trace
 0 to 5%

 few
 5 to 10%

 little
 15 to 25%

 some
 30 to 45%

 mostly
 >50%

Cohesionless Density:

0-4: Very Loose 5-9: Loose 10-29: Med Dense 30-49: Dense 50+ Very Dense

Cohesive Consistency: 0-2: Very Soft 3-4: Soft 5-8: Med Stiff 9-15: Stiff 16-30: Very Hard 31+ Hard

AECOM

Client:	Central Hu	dson Gas &	Electric		Hole Site:	5"		Boring ID:	PSB-2
	60543645			Drilli		S Split Spoor	ר ר	Boring Interval:	0-14 ft
	North Wate	r Street MC	P		rilling Fluid:		•	Page #:	1 of 1
Project Manager:				Location (easting):				Γage <i>π</i> .	
	-	-		Location (easting): Location (northing):				Weather:	75°F Mostly Cloudy
	Atlantic Testing Lab (ATL) CME75					: 31 ft (Approx.)		Start Date:	6/3/2020
-	M. Childs				h of Boring:		JX.)	End Date:	6/3/2020
	J. Christop	hor			r Elevation:			QC Initials:	
соддеа Бу.	J. Chinstop	liei				Not Encou	atorod	QC Date:	
							lieleu	QC Date.	
Depth	Blow Count per 6 inches	Sample Type	Lab Sample	Recovery	Moisture	DIA	nscs		on of Material/ n of Material
Feet				Inches		ррт			
0.5	WOR					-		No Recovery	
1.0	WOR	SS	-	0	_	-	-		
1.5	WOR			· ·		-			
2.0	WOH					-			
2.5	3					35.9		Very loose, wet, b	
3.0	2	SS	-	7	Wet	-	GW	0	GRAVEL with little
3.5	WOH	00		,	wor	28.8	0.11		race silt, moderate
4.0	WOH					-		MGP odor, weak	sheen
4.5	2					16.7		SAA	
5.0	WOH	SS	_	1	Wet	-	GW		
5.5	WOH	- 55	-		WEL	-	011		
6.0	WOH					-			
6.5	WOR					1.0		Very soft, wet, da	rk brown/grey SILT
7.0	WOR	SS		5	Wet	-	ML	with trace fine and	gular gravel, slight
7.5	WOR		-	5	WEL	0.9		to moderate MGP	odor, weak sheen
8.0	WOR					-			
8.5	WOR					0.3		SAA, slight odor,	no sheen
9.0	WOR	SS		8	Wet	-	ML	_	
9.5	WOR		-	0	VVEL	0.3			
10.0	WOR					-			
10.5	WOR					0.2		SAA	
11.0	WOR	SS		19	Wet	0.2	ML	@11.75 little fine	sand, trace shell
11.5	WOR		-	19	vvei	0.1		fragments, passin	
12.0	WOR					0.0			-
12.5	WOR					0.0	N 41	SAA	
13.0	WOR			10	10/-+	0.0	ML	@13 very soft, we	et, dark grey CLAY
13.5	WOR	SS	-	18	Wet	0.0		with little silt, trace	
14.0	WOR	1				0.0	CL	no odor	0 /
									oring @ 14 ft
		1							
		1							

AECOM

Geologic Log

Sample Types: S3 SS ST R
 Soil Descriptors:

 trace
 0 to 5%

 few
 5 to 10%

 little
 15 to 25%

 some
 30 to 45%

 mostly
 >50%

Cohesionless Density:

0-4: Very Loose 5-9: Loose 10-29: Med Dense 30-49: Dense 50+ Very Dense

Cohesive Consistency:

AECOM

Client:	Central Hu	dson Gas &	Electric		Hole Site:	5"		Boring ID:	PSB-3
Project Number:				Drilli	ng Method:		n	Boring Interval:	0-8 ft
	North Wate	er Street MO	3P		Drilling Fluid: Water		-	Page #:	1 of 1
Project Manager:				Location (easting):					
Drilling Co.:			TL)	Location (northing):				Weather:	80°F Sunny
Drill Rig:		<u> </u>	/		o of Boring:	Unknown		Start Date:	6/8/2020
	M. Childs				h of Boring:			End Date:	6/8/2020
Logged By:		her			r Elevation:			QC Initials:	
								QC Date:	
Depth	Blow Count per 6 inches	Sample Type	Lab Sample	Recovery	Moisture	DIA	nscs		n of Material/ n of Material
Feet				Inches		ррт			
0.5	10					2.3		Medium dense, w	et, dark grey to
1.0	10	SS		e	Wet	-	GM	black angular fine	to medium
1.5	5	33	-	6	vvei	0.9	Givi	GRAVEL, some s	ilt, slight MGP
2.0	WOH					-		odor, no sheen	_
2.5	12					98.7		SAA	
3.0	13	SS		9	Wet	-	GM		
3.5	3	33	-	9	vvei	139.1	1		
4.0	15					-	Wood	@ 3.5-4.0 Wood	
4.5	57					-	Wood	Wood (rod pushed	d through @ 4.5 ft)
5.0	-	SS		0	Wet	-			/
5.5	-	33	-	0	vvei	-	1 -		
6.0	-					-			
6.5	5					102.7	GM	`@6-7 - same as (0-2
7.0	2	SS		16	\M/ot	76.2	Givi	@7-8 - Soft, wet,	dark brown grey
7.5	2	33	-	10	Wet	44.5	ML	SILT, little clay, st	rong MGP odor,
8.0	3					38.4		medium sheen	-
8.5								Bottom of B	Boring @ 8 ft
9.0							1		
9.5							1		
10.0									
10.5									
11.0									
11.5									
12.0									
12.5									
13.0									
13.5									
14.0									

Sample Types: S3 SS ST R

Soil Descriptors: trace 0 to 5% few 5 to 10% little 15 to 25% some 30 to 45% mostly >50%

Cohesionless Density:

0-4: Very Loose 5-9: Loose 10-29: Med Dense 30-49: Dense 50+ Very Dense

Cohesive Consistency:

Client:	Central Hu	dson Gas &	Electric		Hole Site:	5"		Boring ID:	PSB-4
Project Number:				Drilli	ing Method:		n	Boring Interval:	0-14 ft
	North Wate	er Street MG	ЭP		rilling Fluid:			Page #:	1 of 1
Project Manager:					n (easting):			Ť	
Drilling Co.:			TL)		Location (northing):			Weather:	84°F Cloudy, Rain
Drill Rig:		- · ·	,		o of Boring:			Start Date:	6/5/2020
Driller:	M. Childs				h of Boring:	14 ft		End Date:	6/5/2020
Logged By:	J. Christop	her			r Elevation:			QC Initials:	
				To	op of Rock:	Not Encou	ntered	QC Date:	
Depth	Blow Count per 6 inches	Sample Type	Lab Sample	Recovery	Moisture	DIA	nscs		on of Material/ n of Material
Feet				Inches		ррт			
0.5	WOR					-		No Recovery	
1.0	WOR	SS	_	0	_	-	l _		
1.5	WOR	00		Ŭ		-			
2.0	WOR					-			
2.5	WOR					-		No Recovery	
3.0	WOR	SS	-	0	_	0.6	_	Small fragments	
3.5	WOR	00		Ŭ		-		moderate MGP o	dor
4.0	WOR					-			
4.5	WOR					46.9			rk grey SILT, trace
5.0	WOR	SS	_	18	Wet	92.4	ML	clay, trace fine gr	
5.5	WOR					99.7		MGP odor, strong	g sheen
6.0	WOR					91.2			
6.5	WOR					99.8		SAA	
7.0	WOR	SS	-	16	Wet	36.1	ML		
7.5	WOR			-		57.7			
8.0	WOR					61.3			
8.5	WOR					10.7		-	derate odor, slight
9.0	WOR	SS	-	9	Wet	-	ML	sheen, no gravel	
9.5	WOR					3.6			
10.0	WOR					2.9		Voncoftt -l-	rlanov OILT to
10.5	WOR					2.9	4		rk grey SILT, trace
11.0 11.5	WOR	SS	-	7.5	Wet	-	ML	clay, slight MGP	ouor, no sneen
11.5	WOR					1.6	-		
12.0	WOR WOR					0.9 0.1	ML	SAA	
12.5	WOR					0.1			t, dark grey CLAY, little
13.5	WOR	SS	-	18.5	Wet	0.1	CL-ML		nents, slight MGP odor
14.0	WOR					0.3		no sheen	
1 1.0	WUR					0.5		Bottom of P	Boring @ 14 ft
							1		
							1		
							1		

Sample Types: S3 SS ST R
 Soil Descriptors:

 trace
 0 to 5%

 few
 5 to 10%

 little
 15 to 25%

 some
 30 to 45%

 mostly
 >50%

Cohesionless Density:

0-4: Very Loose 5-9: Loose 10-29: Med Dense 30-49: Dense 50+ Very Dense

Cohesive Consistency:

0-2: Very Soft 3-4: Soft 5-8: Med Stiff 9-15: Stiff 16-30: Very Hard 31+ Hard

AECOM Geologic Log

Client:	Central Hu	dson Gas &	Electric		Hole Site:	5"		Boring ID:	PSB-5
Project Number:	-			Drilli		Split Spoor	n	Boring Interval:	0-14 ft
	North Wate	er Street MC	θP		rilling Fluid:			Page #:	1 of 1
Project Manager:					n (easting):			. ago ".	
Drilling Co.:			TI)		Location (northing):			Weather:	88°F Hazy/Muggy
Drill Rig:		oung Eas (o of Boring:			Start Date:	6/4/2020
	M. Childs				-	1/1 ft		End Date:	6/4/2020
	J. Christop	hor		Depth of Boring: Water Elevation:				QC Initials:	0/4/2020
Logged By.	o. Onnstop					Not Encou	ntered	QC Date:	
						Not Enood	Intered	QO Bule.	
Depth	Blow Count per 6 inches	Sample Type	Lab Sample	Recovery	Moisture	СIА	nscs		on of Material/ n of Material
Feet				Inches		ррт			
0.5	WOR					0.0		Very soft, wet, da	
1.0	WOR	SS	_	24	Wet	0.0	ML	SILT, moderate o	rganic odor, no
1.5	WOR	00		27	WOL	0.0		stain.	
2.0	WOR					0.0		@0.5-1.0 some fir	ne sand
2.5	WOR					0.0		Very soft, wet, da	rk brown/grey
3.0	WOR	SS		22	Wet	0.0	ML	SILT, moderate o	rganic odor, no
3.5	WOR		-	22	wei	0.0	IVIL	stain.	
4.0	WOR					0.0	1	@3.5-4.0 some fi	ne sand
4.5	WOR					0.0		Very soft, wet, da	rk brown/grey
5.0	WOR				14/ 1	0.0	1	SILT, trace clay, r	
5.5	WOR	SS	-	14	Wet	0.0	ML	odor	0
6.0	WOR					0.0			
6.5	WOR					0.0		SAA	
7.0	WOR			0	14/ 1	-	1		
7.5	WOR	SS	-	8	Wet	0.0	ML		
8.0	WOR					-	1		
8.5	WOR					0.0		SAA	
9.0	WOR			40	\A./ ·	0.0	1		
9.5	WOR	SS	-	16	Wet	0.0	ML		
10.0	WOR					0.0	1		
10.5	WOR					-		SAA	
11.0	WOR					0.1	1		
11.5	WOR	SS	-	14	Wet	-	ML		
12.0	WOR					-	1		
12.5	WOR					0.0		Very soft, wet, da	rk brown/arev
13.0	WOR					0.0		CLAY, some silt, t	•••
13.5	WOR	SS	-	21	Wet	0.0	CL-ML	moderate organic	
14.0	WOR					0.0	1		
-						0.0		Bottom of B	oring @ 14 ft
								Estion of B	
							1		
	I								

AECOM

Geologic Log

Sample Types: S3 SS ST R
 Soil Descriptors:

 trace
 0 to 5%

 few
 5 to 10%

 little
 15 to 25%

 some
 30 to 45%

 mostly
 >50%

Cohesionless Density:

0-4: Very Loose 5-9: Loose 10-29: Med Dense 30-49: Dense 50+ Very Dense

Cohesive Consistency:

AECOM

Client:	Central Hu	deon Gae &	Electric		Hole Site:	5"		Boring ID:	PSB-7
Project Number:		uson Gas o	LIECUIC	Drilli		S Split Spoor	0	Boring Interval:	0-14 ft
	North Wate	r Stroot MC	סי				1	Page #:	1 of 1
Project Manager:				Drilling Fluid:				Faye #.	
					Location (easting): Location (northing):			Weather:	
	Atlantic Testing Lab (ATL)								
Drill Rig:					o of Boring:	44.0		Start Date:	
	M. Childs				h of Boring:			End Date:	
Logged By:	J. Christop	her			r Elevation:			QC Initials:	
				10	ор от Коск:	Not Encou	ntered	QC Date:	
Depth	Blow Count per 6 inches	Sample Type	Lab Sample	Recovery	Moisture	DIA	nscs		on of Material/ n of Material
Feet				Inches		ррт			
0.5	WOH					-		Pulverized, weath	
1.0	WOR	SS	_		Wet	0.6	ML	Very soft, wet, da	rk grey SILT, little
1.5	WOR	00	-		VVCL	-		fine sand, trace fir	ne angular gravel
2.0	WOR					0.9		fragments	
2.5	WOR					0.9		Very loose, wet, dark g	•
3.0	WOR	SS		11	\A/at	1.2	SM	medium SAND, little silt	t, moderate MGP odor,
3.5	WOR	- 55	-	14	Wet	0.7		slight sheen @3.5 very soft, wet, dat	rk arey to arey SILT
4.0	WOR					-	ML	trace clay, slight MGP c	
4.5	WOR					0.5		Very loose, wet, d	
5.0	WOR					0.5		fine to medium SA	
5.5	WOR	SS	-	8	Wet	0.3	SM	moderate MGP or	
6.0	WOR					0.4			, g
6.5	WOR					2.6		Verv soft, wet, da	rk grey SILT, little
7.0	WOR					-		clay, slight MGP of	
7.5	WOR	SS	-	8.5	Wet	1.5	ML	(possibly residual	
8.0	WOR					-		(pocolory roolada))
8.5	WOR					0.5		SAA	
9.0	WOR					0.5	-	577	
9.5	WOR	SS	-	11	Wet	0.5	ML		
10.0						0.5			
10.5	WOR					0.3		SAA, pulverized c	obblo/grouply @
	2						1		obbie/gravery @
11.0 11.5	2	SS	-	12	Wet	0.2	ML	11.5	
11.5						0.0	1		
	2					-		S A A	
12.5	WOR					0.0		SAA	
13.0	WOR	SS	-	9	Wet	0.1	ML		
13.5	WOR					0.2			
14.0	WOR					-			
								Bottom of B	oring @ 14 ft
							ł		

AECOM

Geologic Log

Sample Types: S3 SS ST R
 Soil Descriptors:

 trace
 0 to 5%

 few
 5 to 10%

 little
 15 to 25%

 some
 30 to 45%

 mostly
 >50%

Cohesionless Density:

0-4: Very Loose 5-9: Loose 10-29: Med Dense 30-49: Dense 50+ Very Dense

Cohesive Consistency:

AECOM

Client:	Central Hu	dson Gas &	Electric		Hole Site:	5"		Boring ID:	PSB-8
Project Number:	60543645			Drilli		Split Spoor	า	Boring Interval:	0-14 ft
· ·	North Wate	er Street MC	6P		rilling Fluid:			Page #:	1 of 1
Project Manager:	George Lea	ahy			n (easting):			Ŭ	
	Atlantic Te	-	TL)	Location (northing):				Weather:	90°F Sunny
Drill Rig:	CME75	<u> </u>	,	Top of Boring:				Start Date:	6/9/2020
-	M. Childs				h of Boring:	14 ft		End Date:	6/9/2020
Logged By:	J. Christop	her		Water Elevation			•	QC Initials:	
	•			To	op of Rock:	Not Encour	ntered	QC Date:	
Depth	Blow Count per 6 inches	Sample Type	Lab Sample	Recovery	Moisture	DIA	sosn		on of Material/ n of Material
Feet				Inches		ррт			
0.5	WOR					-		No Recovery, no	odor
1.0	WOR	SS	-	0	_	-	-		
1.5	WOR			Ŭ		-			
2.0	WOR					-			
2.5	WOR					-		Very soft, wet, gre	
3.0	WOR	SS	-	5	Wet	193.7	ML		r gravel, little slag,
3.5	WOR			Ŭ		-		strong MGP odor	strong sheen
4.0	WOR					-			
4.5	WOR					52.1		SAA	
5.0	WOR	SS	_	9	Wet	-	ML		
5.5	WOR	00		Ŭ	WOL	50.9	IVIL		
6.0	WOR					-			
6.5	WOR					34.6	ML	Very soft, wet, dark g	
7.0	WOR	SS	_	14	Wet	27.9		moderate MGP odor,	moderate sheen dark grey CLAY, little
7.5	WOR	00		17	WOL	29.3	CL	silt, moderate MGP of	
8.0	WOR					31.1	02		
8.5	WOR					-			rk grey SILT, little
9.0	WOR	SS	-	9	Wet	16.8	ML	clay, moderate M	GP odor,
9.5	WOR	00		Ŭ		17.2		moderate sheen	
10.0	WOR					10.9			
10.5	WOR					6.1	ML	SAA	
11.0	WOR	SS	-	9	Wet	-		@ 11-12 Very sof	
11.5	WOR	-		-		4.2	CL	CLAY, little silt, m	
12.0	WOR					3.8		odor, no sheen	
12.5	WOR					-		SAA	
13.0	WOR	SS	-	9	Wet	5.9	CL		
13.5	WOR			-		4.7	_		
14.0	WOR					-			
								Bottom of B	oring @ 14 ft
		_				_			

AECOM

Geologic Log

Sample Types: S3 SS ST R
 Soil Descriptors:

 trace
 0 to 5%

 few
 5 to 10%

 little
 15 to 25%

 some
 30 to 45%

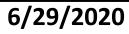
 mostly
 >50%

Cohesionless Density:

0-4: Very Loose 5-9: Loose 10-29: Med Dense 30-49: Dense 50+ Very Dense

Cohesive Consistency:

AECOM


Appendix B Geotechnical Investigation Analytical Results

Technologies to manage risk for infrastructure

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

Geotechnical Test Report

GTX-311893

CHGE NWS

Poughkeepsie, NY

Client Project No.: 60543645

Prepared for:

AECOM

Client: AECOM Project: CHGE NWS Location: Poughkeepsie, NY Boring ID: ---Sample ID: ---Depth : ---

Project No: Sample Type: ---Tested By: ckg Test Date: 06/23/20 Checked By: bfs Test Id: 560343

GTX-311893

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
	PSB- 1	0-2	Wet, very dark gray clay with sand	64.6
	PSB- 1	2-4	Moist, very dark gray sandy clay	40.7
	PSB- 1	6-8	Wet, very dark gray clay with sand	52.4
	PSB- 1	8-10	Wet, very dark gray clay with sand	58.7
	PSB- 1	12-14	Wet, very dark gray clay	59.9
	PSB- 2	2-4	Moist, very dark gray gravel with silt and sand	25.8
	PSB- 2	8-10	Wet, very dark gray silt with sand	61.7
	PSB- 2	12-14	Wet, very dark gray clay	64.0
	PSB- 3	2-4	Moist, very dark gray silty sand with gravel	42.4
	PSB- 3	6-8	Moist, very dark gray gravelly clay with sand	37.9

Notes: Temperature of Drying : 110° Celsius

Client: AECOM Project: CHGE NWS Location: Poughkeepsie, NY Boring ID: ---Sample ID: ---Depth : ---

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
	PSB- 4	4-6	Wet, very dark gray clay with sand	66.6
	PSB- 4	10-12	Wet, very dark gray clay with sand	53.5
	PSB- 4	12-14	Wet, very dark gray clay	58.6
	PSB- 5	0-2	Wet, very dark gray clay with sand	80.6
	PSB- 5	2-4	Wet, very dark gray sandy clay	54.0
	PSB- 5	8-10	Wet, very dark gray clay with sand	52.8
	PSB- 5	10-12	Wet, very dark gray clay	62.2

Notes: Temperature of Drying : 110° Celsius

Client: AECOM Project: CHGE NWS Location: Poughkeepsie, NY Boring ID: ---Sample ID: ---Depth : ---

Project No: Sample Type: ---Tested By: Test Date: 06/22/20 Checked By: bfs Test Id: 560328

GTX-311893 ckg

Moisture Content of Soil and Rock - ASTM D2216

Boring ID	Sample ID	Depth	Description	Moisture Content,%
	PSB- 7	2-4	Wet, very dark gray clayey sand	64.8
	PSB- 7	4-6	Moist, very dark gray silty sand	58.0
	PSB- 7	6-8	Wet, very dark gray clay with sand	49.8
	PSB- 7	10-12	Moist, very dark gray gravelly clay	42.9
	PSB- 8	4-6	Moist, very dark gray sandy silt with gravel	75.3
	PSB- 8	6-8	Moist, very dark gray clay with sand	57.9
	PSB- 8	10-12	Wet, very dark gray clay	62.5
	PSB- 8	12-14	Moist, very dark gray clay with sand	59.4

Notes: Temperature of Drying : 110° Celsius

Percent Finer

	Client:	AECOM					
	Project:	CHGE NWS	S				
ting	Location:	Poughkeep				Project No:	GTX-311893
LIIY	Boring ID:			Sample Type:	bag	Tested By:	ckg
	Sample ID:	PSB-1		Test Date:	06/23/20	Checked By:	bfs
	Depth :	0-2		Test Id:	560377		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very d	lark gray clay wit	h sand		
	Sample Co	mment:					
Pa	rticle	Size	Analy	′sis - AS	TM D	6913	
		르. 입고					
		.5 in .375	4 10	#20 #40 #60	100 140 200		
		;	# # + 1	# # #	# # #		
	-	Ϋ́Υ	$-\circ$				
		1.4		, j v	I F I Salas Kaslasa		
	-	i .i. 1 .1					
		i i			V		
		1 1 1 1 1	1				
	-	i i	i i				
			· · · [· · · · ·]·				
	:	· · · · · · · · · · · · · · · · · · ·			- de l'erte en		
		1 (L	I I	I I	E E E		

1
Grain Size (mm)

0.01

0.1

0.001

	% Cobb	e	C	% Gravel		% Sand		% Silt & Clay Size
	-	2.3		2.3 25.2		25.2		72.5
Sieve Name	Sieve Size, mm	Percent	Finer S	Spec. Percent	Complies]		<u>Coefficients</u>
							$D_{85} = 0.18$	27 mm D ₃₀ = N/A
0.5 in	12.50	100				_	D ₆₀ = N/A	D ₁₅ =N/A
0.375 in #4	9.50	100 98				_	D ₅₀ = N/A	D ₁₀ = N/A
#10	2.00	97	· · · · ·			-	$C_{\mu} = N/A$	$C_{c} = N/A$
#20	0.85	96				-		
#40	0.42	95				-		Classification
#60	0.25	92				-	<u>ASTM</u>	Lean CLAY with Sand (CL)
#100	0.15	81						
#140	0.11	77				1	ΔΔΩΗΤΟ	Clayey Soils (A-7-6 (15))
#200	0.075	73				-		
							Sand/Gray	Sample/Test Description vel Particle Shape :
							Sand/Grav	vel Hardness :

Percent Finer

r											
	Client:	AECOM									
	Project:	CHGE NWS	5								
	Location:	Poughkeep	sie, NY						Project No:	GT	TX-311893
Ig	Boring ID:				Sam	ple Typ	be:	bag	Tested By:	ckg	
	Sample ID:	PSB-1			Test	Date:		06/23/20	Checked By:	bfs	
	Depth :	2-4			Test	Id:		560376			
	Test Comm	ent:									
	Visual Desc	ription:	Moist, vei	∽y da	ark gra	ay sano	dy c	lay			
	Sample Cor	nment:									
Pa	rticle	Size	Anal	VS	is	- A	S	TM D	6913		
<u> </u>		5120		,		/ \			0710		
		<u>ב</u> . <u>ב</u>									
		7 ir		_	_	-	_	0 6 0			
		<u>м</u> и Л	4 7	H TO	£20	#40	1 6 0	114 14 14			
			# *	₽ 	#	#	#	* * *			
		```\`\`\ `\			11	1	1	1 0 1			

0.1

0.01

0.001

Grain Size (mm)

	% Cobbl	e	% Gravel		% Sand		% Si	ilt & Clay Size		
	-		6.3		6.3		42.3 51.4		51.4	
Sieve Name	Sieve Size, mm	Percent Fine	r Spec. Percent	Complies		D 0.202		fficients		
0.75 in	19.00	100				$D_{85} = 0.303$	38 mm	$D_{30} = N/A$		
0.75 m	19.00	96			-	$D_{60} = 0.143$	34 mm	$D_{15} = N/A$		
0.375 in	9.50	96			_	D ₅₀ = N/A		$D_{10} = N/A$		
#4	4.75	94			-	$C_{\mu} = N/A$		$C_{c} = N/A$		
#10	2.00	91			1				_	
#20	0.85	90			1			sification		
#40	0.42	88			1	ASTM	Sandy Lean	CLAY (CL)		
#60	0.25	83								
#100	0.15	61			1	AASHTO	Clayey Soils	$(\Lambda_{-}7_{-}6(7))$		
#140	0.11	56			1		Clayey Solis	$(\Lambda^{*})^{*} \cup (\gamma))$		
#200	0.075	51			1					
					-	Sand/Grav	Sample/Te	est Description hape : ANGULAR		
			· ·		_		el Hardness			

	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
Ig	Boring ID:			Sample T	/pe: bag	Tested By:	ckg
	Sample ID:	PSB-1		Test Date	: 06/23/20	Checked By:	bfs
	Depth :	6-8		Test Id:	560375		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very da	ark gray clay	with sand		
	Sample Cor	mment:					
		~ .	. .				
Pa	rticle	Size	Analy	ASTM D	6913		
		<u> </u>					
		75 i			000		
		5	_ <u> </u>	01 01			

ਸ਼ 60 		1	4 1 1					-
ië							 	
Bercent Finer							1 4	· · · ·
40 -		- - - - -	а 4 ,(1 4 4	J J. I		· · · · · · · · · · · · · · · · · · ·	 	· · · ·
30			; 				1 1 1 1	:
20							1 1 1 1 1	- - - - - -
10			4)1 		 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 4 · · · · · · · · · · · · · · · · · · ·	· · ·
0) 			1 1 1 1 1 L 	1 1 1	- - -
1000	0	100	10	Gra	1 ain Size (mm)	0.1	0	.01 0
	% Cobbl	e	% Gravel		% Sand		% Silt & C	lay Size
			0.9		19.4		79	-

AASHTO Clayey Soils (A-7-6 (20))

Sand/Gravel Particle Shape : ---

Sand/Gravel Hardness : ---

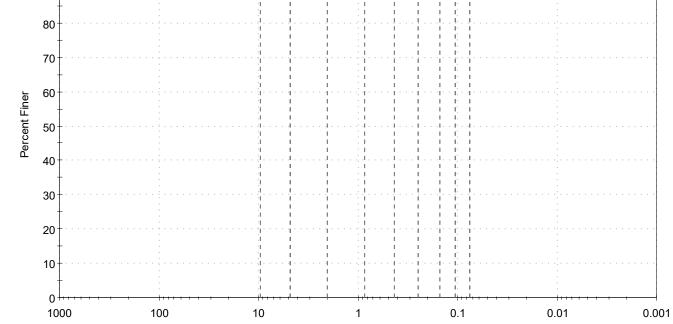
#200

0.075

80

	Client:	AECOM								
	Project:	CHGE NWS	5							
g	Location:	Poughkeep	osie, NY					Project No:	GTX-3	311893
9	Boring ID:				Samp	le Type:	bag	Tested By:	ckg	
	Sample ID:	PSB-1			Test D	ate:	06/23/20	Checked By:	bfs	
	Depth :	8-10			Test I	d:	560374			
İ	Test Comm	ent:								
	Visual Description: Wet, very da				k gray	clay wit	h sand			
	Sample Cor	nment:								
Da	rtiala	Cizo	A m a		ia			6012		
Pd	rticle	Size	And	iiys	IS -	AS		0912		
		. <u>c</u>								
		375		~	-	~ ~	0 2 0			
		m.	4	#10	£20	#40 #60	114 14 20			
		<u></u>	#	#	#	# #	* * *			

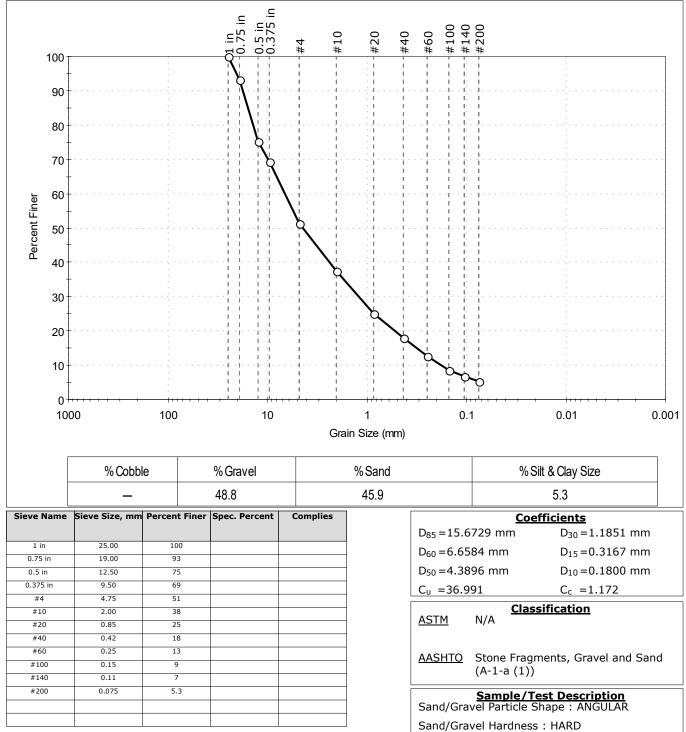
100		č	<u> </u>			
+						
90+	•••••			· · · · · · · · · · · · · · · · · · ·		
÷		1 1				
80 - • • • • • •						
-	:	. i i			•	
70	· · · · · · · · · · · · · · · · · · ·					
		i i	i li			
60		i				
00		1 1				
50		i i	i li			
50		1 1				
40						
40 + · · · · · · ·			I .I			
Ť		i i	i i			
30			· · · · · · · · · · · · · · · · · · ·			
Ť			i i			
20		·····i			• • • • • • • • • • • • • • • • • • • •	
÷	-	4 I 1 I				
10+		i i i i i i i i i i i i i i i i i i i	· · · · · · · · · · · · · · · · · · ·			• • •
÷						
0 +	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	····	· · · · · · · · · · · · · · · · · · ·	+ + + + + + + + + + + + + + + + + + + +	
1000	100	10	1	0.1	0.01	


Grain Size (mm)

_							
	% Cobb	le	% Gravel		% Sand		% Silt & Clay Size
			0.4		16.2		83.4
Sieve Name	Sieve Size, mm	Percent Fir	ner Spec. Percent	Complies]		Coefficients
0.375 in	9.50	100			-	D ₈₅ =0.07	
#4	4.75	100			-	$D_{60} = N/A$	$D_{15} = N/A$
#10	2.00	99			-	D ₅₀ = N/A	D ₁₀ = N/A
#20	0.85	99			-	$C_{u} = N/A$	$C_{c} = N/A$
#40	0.42	99			1		
#60	0.25	99			1	ACTM	Classification
#100	0.15	97			1	<u>ASTM</u>	Lean CLAY with Sand (CL)
#140	0.11	92			1		
#200	0.075	83			-	AASHTO	Clayey Soils (A-7-6 (16))
					-		
	1	1			-	Sand/Grav	Sample/Test Description vel Particle Shape :

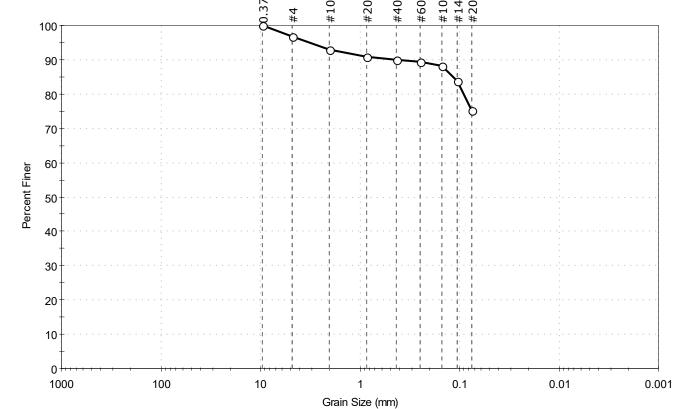
90

	Client:	AECOM					
	Project:	CHGE NWS	5				
ing	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
HIY	Boring ID:			Sample Type:	bag	Tested By:	ckg
	Sample ID:	PSB-1		Test Date:	06/22/20	Checked By:	bfs
	Depth :	12-14		Test Id:	560373		
	Test Comm	ent:					
	Visual Desc	cription:	Wet, very darl	k gray clay			
	Sample Co	mment:					
		<u>.</u> .					
Pa	rticle	Size	Analys	is - AS	TM D	6913	
		.⊆					
		.375	. 0	0 0 0	00400		
		8	# # 1 4	#20 #40 #60	#100 #140 #200		
				$-\phi - \phi - \phi$	- Ò-Ò .		
	1	-1 -1					
	••• • • • • • • • • • • •	· · · · · · · · · (1· ·			ales forderes The L	•••••••••••••••••••••••••••••••••••••••	
	:	1				-	
			į į				
) 1			I I I		
	1	л Ч				:	
				(1) (1) (1) (1)	- 1 C - 1 C - 1 C - 1		



Grain Size (mm)

									_	
	% Cobb	le		% Gravel		% Sand		% Silt & Clay Size		
				0.2		4.5		95.3		
Sieve Name	Sieve Size, mm	Percen	t Finer	Spec. Percent	Complies		D ₈₅ =N/A	Coefficients D ₃₀ = N/A		
0.375 in	9.50	10	00			-	D ₆₀ = N/A	D ₁₅ =N/A		
#4	4.75	10	00			-		D15-N/A		
#10	2.00	10	00			-	D ₅₀ = N/A	$D_{10} = N/A$		
#20	0.85	9	9			1	$C_{\mu} = N/A$	$C_{c} = N/A$		
#40	0.42	9	9			-		÷ ,		
#60	0.25	9	9			-	ACTM	Classification		
#100	0.15	9	8			-	ASTM	Lean CLAY (CL)		
#140	0.11	9	8			-				
#200	0.075	9	5			-	<u>AASHTO</u>	Clayey Soils (A-7-6 (28))		
						_				
							Sand/Gra	Sample/Test Description vel Particle Shape :		



	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
9	Boring ID:			Sample Type:	bag	Tested By:	ckg
	Sample ID:	PSB-2		Test Date:	06/22/20	Checked By:	bfs
	Depth :	2-4		Test Id:	560372		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, very da	irk gray gravel	with silt and	d sand	
	Sample Cor	nment:					
Pa	rticle	Size	Analys	is - AS	TM D	6913	
		_					

	Client:	AECOM					
	Project:	CHGE NWS	5				
ing	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
	Boring ID:			Sample Type:	bag	Tested By:	ckg
	Sample ID:	PSB-2		Test Date:	06/23/20	Checked By:	bfs
	Depth :	8-10		Test Id:	560371		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very dar	k gray silt with	sand		
	Sample Cor	mment:					
		<u><u></u>.</u>	A 1			<u> </u>	
Pa	rticle	Size	Analys	is - AS	IMD	6913	
		. <u>c</u>					
		75 i	_		00 40		
		ι. Γ	# 4 # 10	#20 #40 #60	\neg \neg \neg		
		8			* * *		
	1	1				:	
		۹ - باۋ ا					
		л 1				1	
			1 I 1				
		4			l l `\		
	:	л Ч			ткү	1	
			1 1			· · · · · · · · · · · · · · · · · · ·	
		-1	1 1	- 1	I E I		

_					1					
	% Cobb	le	% Grave	el		% Sand		% Silt	& Clay Size	
	- 3.2					21.6			75.2	
Sieve Name Sieve Size, mm Percent Finer Spec. Percent Com					Complies]		Coeffi	<u>cients</u>	
							D ₈₅ =0.11	63 mm	$D_{30} = N/A$	
0.375 in	9.50	100					$D_{60} = N/A$		$D_{15} = N/A$	
#4	4.75	97							,	
#10	2.00	93					$D_{50} = N/A$		$D_{10} = N/A$	
#20	0.85	91]	$C_u = N/A$		C _c =N/A	
#40	0.42	90					, , , , , , , , , , , , , , , , , , ,	<u> </u>		
#60	0.25	89				1	ACTM	CILT with Car	fication	
#100	0.15	88					<u>ASTM</u>	SILT with San	a (ML)	
#140	0.11	84								
#200	0.075	75				1		Clavov Soile (A 7 6 (12))	
						-	AASHIU	Clayey Soils (A-7-0 (12))	
						1				
	1	1	I			1		Sample/Tes	t Description	
							Sand/Grav	vel Particle Sha	ape : ANGULAR	

Sand/Gravel Hardness : HARD

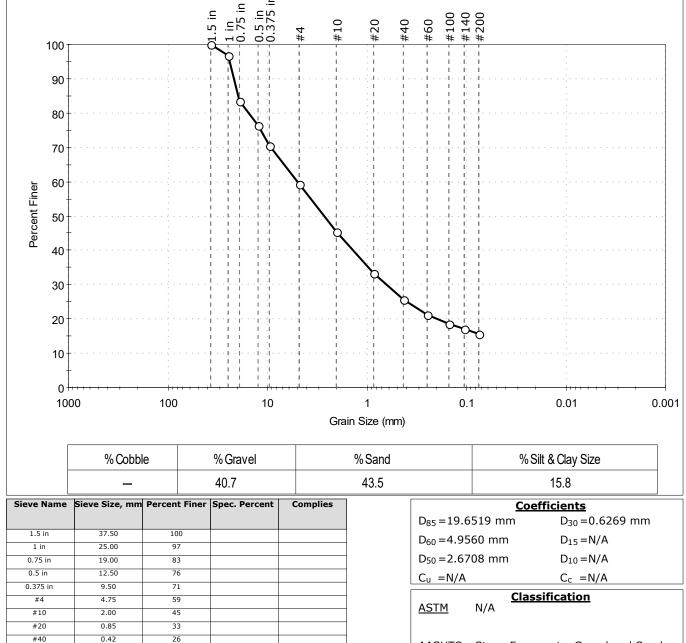
Percent Finer

Project: CHGE NWS Location: Poughkeepsie, NY Project No: GTX-311893 Boring ID: Sample Type: bag Tested By: ckg Sample ID: PSB-2 Test Date: 06/23/20 Checked By: bfs Depth: 12-14 Test Id: 560370 Test Comment: Visual Description: Wet, very dark gray clay Sample Comment: Particle Size Analysis - ASTM D6913		Client:	AECOM						
Sample ID: PSB-2 Depth: 12-14 Test Id: 560370 Test Comment: Visual Description: Wet, very dark gray clay Sample Comment: Particle Size Analysis - ASTM D6913 .=		Project:							
Sample ID: PSB-2 Depth: 12-14 Test Id: 560370 Test Comment: Visual Description: Wet, very dark gray clay Sample Comment: Particle Size Analysis - ASTM D6913 .=	ting			psie, NY					
Depth: 12-14 Test Id: 560370 Test Comment: Visual Description: Wet, very dark gray clay Sample Comment: Particle Size Analysis - ASTM D6913 5									
Test Comment: Visual Description: Wet, very dark gray clay Sample Comment: Particle Size Analysis - ASTM D6913 .=								Checked By:	bfs
Visual Description: Sample Comment: Particle Size Analysis - ASTM D6913		· ·				Test Id:	560370		
Sample Comment: Particle Size Analysis - ASTM D6913		Test Comm	ient:						
Particle Size Analysis - ASTM D6913				Wet, ver	y dark	c gray clay			
		Sample Co	mment:						
	Pa	rticle	Size	Anal	vsi	is - AS	TM D	6913	
					1-				
							0 0 0		
			.37	4	10	20 40 60	100 14(20(
			8	<u></u>	* 				
				i i	Υ ι				
			4 		1	Al III. Alas a da a da a	· • • • • • • • • • • • • • • • • • • •		
					1				
			i.	i i	i	1 I I	i (i -		
			1	1.1.1	į				
		-	i.		i i		i i i		
			÷		<u> </u>	<u></u>			
			i I	1	1				
					1		i Çi		
			4	1	1		I B I		
) 	1	1				
		••• {••••••••••••••••••••••••••••••••••		· · · · [· · · · · ·	de e e e T	Alexandra de la composición de la composicinde la composición de la composición de la composición de l	n de la Banda da la Tradición	••••••	
				i	i		i i i		
			1						1
			יי די רו, רו רו רו רו		1 .1	(1	i Fili. Alti Çi Ji A		

	% Cobb	le	% Gravel		% Sand		% Silt & Clay Size
	_ 1		1.1	1.1			92.3
Sieve Name	Sieve Size, mm	Percent Fine	Spec. Percent	Complies]		Coefficients
						$D_{85} = N/A$	$D_{30} = N/A$
0.375 in	9.50	100			1	$D_{60} = N/A$	D ₁₅ =N/A
#4	4.75	99					
#10	2.00	99				D ₅₀ = N/A	$D_{10} = N/A$
#20	0.85	99				$C_u = N/A$	$C_c = N/A$
#40	0.42	99					
#60	0.25	98				ASTM	<u>Classification</u> Fat CLAY (CH)
#100	0.15	98			1	ASTM	
#140	0.11	96			1		
#200	0.075	92				AASHTO	Clayey Soils (A-7-6 (33))
					-		
	1	1			_		Sample/Test Description vel Particle Shape :

Grain Size (mm)

Sand/Gravel Hardness : ---


0.1

0.01

0.001

	Client:	AECOM					
	Project:	CHGE NWS	5				
'n	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
g	Boring ID:			Sample Type:	bag	Tested By:	ckg
	Sample ID:	PSB-3		Test Date:	06/22/20	Checked By:	bfs
	Depth :	2-4		Test Id:	560369		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, very da	ark gray silty sa	nd with gra	vel	
	Sample Cor	nment:					
_		~	A I			<u> </u>]
Ра	rticle	Size	Analys	is - AS	IMD	6913	
			/				
		<u> </u>					

AASHTO Stone Fragments, Gravel and Sand (A-1-b (0))

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR Sand/Gravel Hardness : HARD

0.25

0.15

0.11

0.075

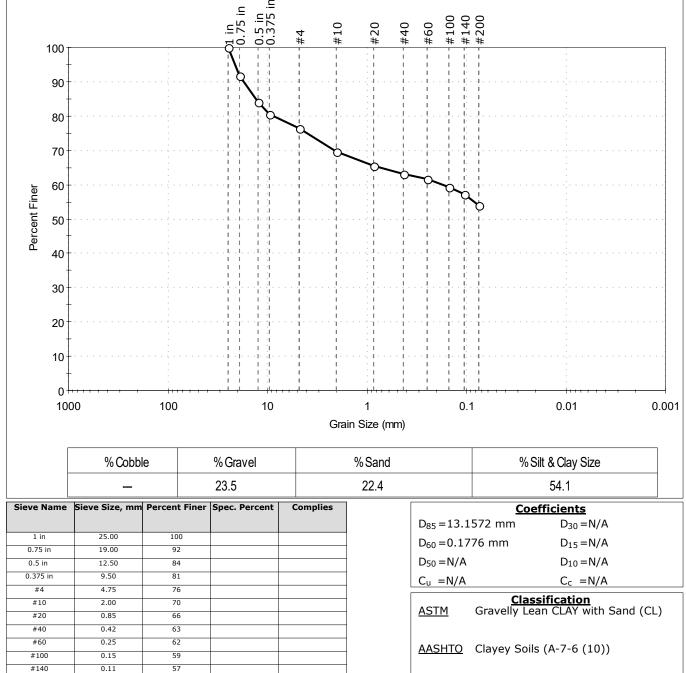
21

19

17

16

#60

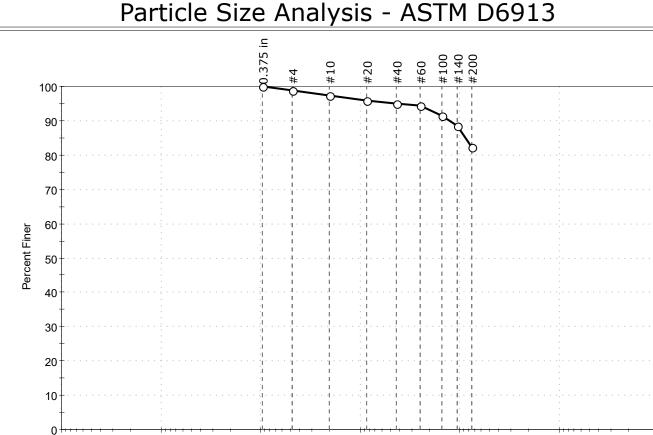

#100

#140

#200

Г	Client:	AECOM									
	Project:	CHGE NWS	5								
n	Location:	Poughkeep	sie, NY			Project No:	GTX-311893				
g	Boring ID:			Sample Type:	bag	Tested By:	ckg				
	Sample ID:	PSB-3		Test Date:	06/22/20	Checked By:	bfs				
	Depth :	6-8		Test Id:	560368						
Γ	Test Comme	ent:									
	Visual Desc	ription:	Moist, very da	rk gray gravelly	/ clay with	sand					
	Sample Cor	nment:									
Particle Size Analysis - ASTM D6913											

Sample/Test Description Sand/Gravel Particle Shape : ANGULAR Sand/Gravel Hardness : HARD


0.075

54

#200

	Client:	AECOM						
	Project:	CHGE NWS	5					
nà	Location:	Poughkeep	osie, NY				Project No:	GTX-311893
ng	Boring ID:				Sample Type:	bag	Tested By:	ckg
	Sample ID:	PSB-4			Test Date:	06/22/20	Checked By:	bfs
	Depth :	4-6			Test Id:	560367		
	Test Comm	ent:						
	Visual Desc	ription:	Wet, very	dark	gray clay with	n sand		
	Sample Cor	mment:						
		<u> </u>						
Pa	rticle	Size	Analy	/Sİ	is - AS	TM D	6913	
		C						
		ں آ				000		
		.37	#4 #10	1	#20 #40 #60	10 14 20		
		8_		-	* * *	# # #		
	-	jî J						
		4 	1 I		γ γ	a :		
			1 1			\mathcal{A}		
			- i - i					

1	
Grain Size (mm)	

	% Cobble		% Gravel		% Sand		% Silt & Clay Size	
-			1.3		16.3		82.4	
Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies	1		Coefficients	
						D ₈₅ =0.087	1 mm D ₃₀ =N/A	
0.375 in	9.50	100				$D_{60} = N/A$	$D_{15} = N/A$	
#4	4.75	99						
#10	2.00	97				$D_{50} = N/A$	$D_{10} = N/A$	
#20	0.85	96				$C_u = N/A$	$C_c = N/A$	
#40	0.42	95						
#60	0.25	94				ASTM I	Classification Lean CLAY with Sand (CL)	,
#100	0.15	91				<u>A3111</u> 1	Lean CLAT with Sand (CL))
#140	0.11	88						
#200	0.075	82				AASHTO (Clayey Soils (A-6 (15))	
					-			
	1		1				Sample/Test Description	on

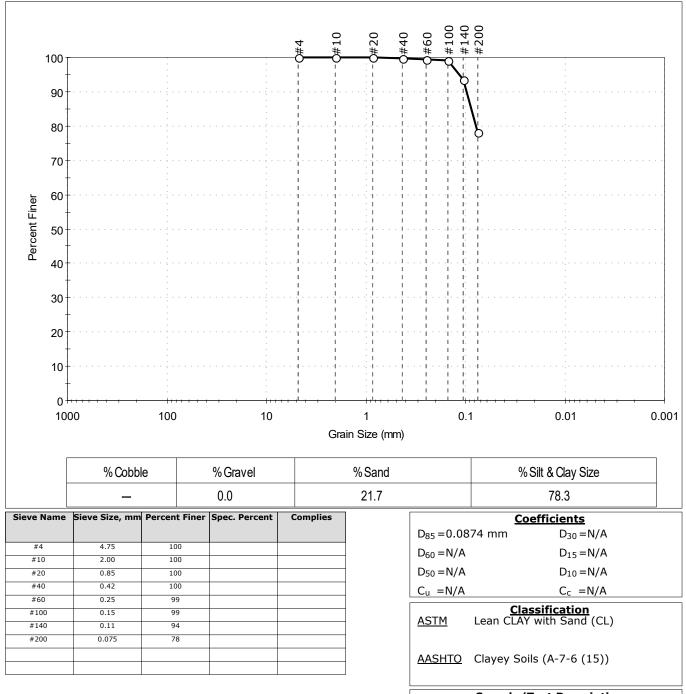
Sand/Gravel Particle Shape : ---

0.01

0.001

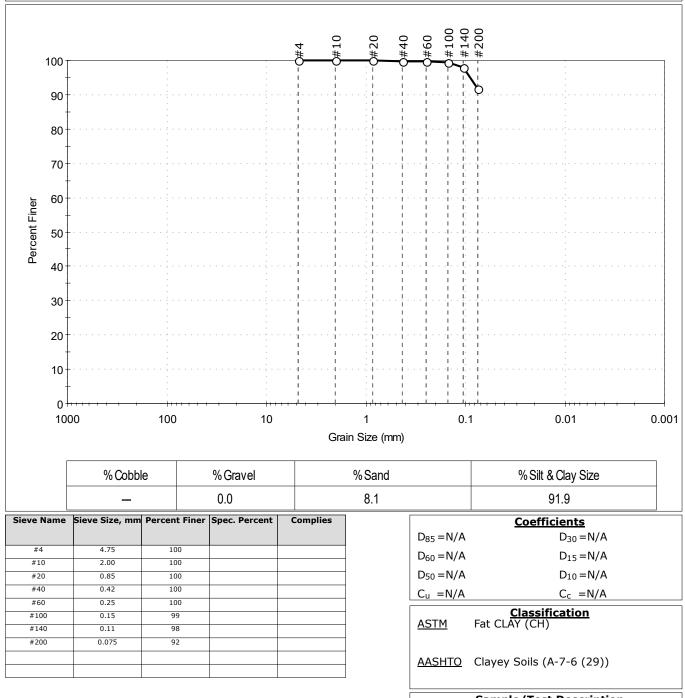
Sand/Gravel Hardness : ---

0.1

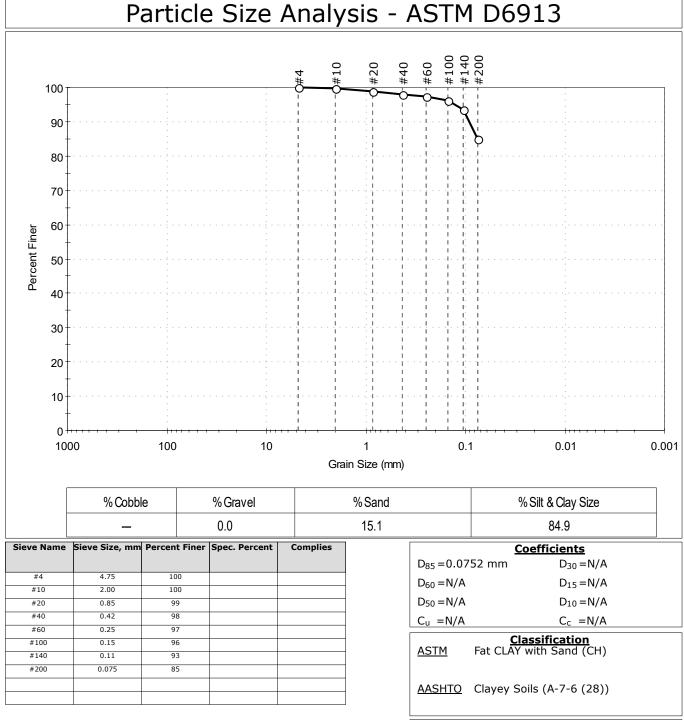

1000

100

10


Client:	AECOM										
Project:	CHGE NWS	5									
Location: Poughkeepsie, NY Project No: GTX-311893											
Instrument Project No: GTX-311893 Boring ID: Sample Type: bag Tested By: ckg											
Sample ID:	PSB-4		Test Date:	06/23/20	Checked By:	bfs					
Depth :	10-12		Test Id:	560366							
Test Comm	ent:										
Visual Desc	ription:	Wet, very dark	c gray clay with	n sand							
Sample Comment:											
Particle Size Analysis - ASTM D6913											
	Project: Location: Boring ID: Sample ID: Depth : Test Comm Visual Desc Sample Cor	Project: CHGE NWS Location: Poughkeep Boring ID: Sample ID: PSB-4 Depth : 10-12 Test Comment: Visual Description: Sample Comment:	Project: CHGE NWS Location: Poughkeepsie, NY Boring ID: Sample ID: PSB-4 Depth : 10-12 Test Comment: Visual Description: Wet, very dark Sample Comment:	Project: CHGE NWS Location: Poughkeepsie, NY Boring ID: Sample ID: PSB-4 Depth : 10-12 Test Comment: Visual Description: Wet, very dark gray clay with sample Comment:	Project: CHGE NWS Location: Poughkeepsie, NY Boring ID: Sample ID: PSB-4 Test Date: 06/23/20 Depth : 10-12 Test Id: 560366 Test Comment: Visual Description: Wet, very dark gray clay with sand Sample Comment:	Project:CHGE NWSProject No:Location:Poughkeepsie, NYProject No:Boring ID:Sample Type:bagSample ID:PSB-4Test Date:06/23/20Depth :10-12Test Id:560366Test Comment:Visual Description:Wet, very dark gray clay with sand					

Sample/Test Description Sand/Gravel Particle Shape : ---


	Client: AECOM											
	Project:	CHGE NWS	5									
à	Location: Poughkeepsie, NY Project No: GTX-311893											
g	Boring ID: Sample Type: bag Tested By: ckg											
	Sample ID: PSB-4 Test Date: 06/22/20 Checked By: bfs											
	Depth :	12-14		Test Id:	560365							
	Test Comm	ent:										
	Visual Desc	ription:	Wet, very dar	k gray clay								
Sample Comment:												
Pa	Particle Size Analysis - ASTM D6913											

Sample/Test Description Sand/Gravel Particle Shape : ---

Da	Particle Size Analysis - ASTM D6013											
	Sample Co	mment:										
	Visual Desc	•	Wet, very dar	k gray clay with	n sand							
	Test Comm	ent:										
	Depth :	0-2		Test Id:	560364							
	Sample ID:	PSB-5		Test Date:	06/22/20	Checked By:	bfs					
9	Boring ID:			Sample Type:	bag	Tested By:	ckg					
	Location:	Poughkeep	osie, NY			Project No:	GTX-311893					
	Project: CHGE NWS											
	Client:	AECOM										

Sample/Test Description Sand/Gravel Particle Shape : ---

,										
	Client:	AECOM								
	Project:	CHGE NWS	5							
	Location:	Poughkeep	sie, NY						Project No:	GTX-311893
9	Boring ID:				Samp	ole Ty	pe:	bag	Tested By:	ckg
	Sample ID:	PSB-5			Test I	Date:		06/22/20	Checked By:	bfs
	Depth :	2-4			Test I	[d:		560363		
	Test Comm	ent:								
	Visual Desc	ription:	Wet, ve	ry dar	k gray	sand	y cla	ау		
	Sample Cor	nment:								
Pa	rticle	Size	Δna	lvs	is .	- Δ	S	TM D	6913	
īч	I CICIC	SIZC	/ 110	195	15	/ \			0713	
		۲								
		5 i						000		
		75 37 37	4	10	#20	#40	#60	100 140 200		
		<u> </u>	#	#	#	#	#	# # #		
	1	100		i	- i	i.	į.	i (i	1	
			Jo-	1		i.	i.			
		and a first subscription.								

100 _T			0.5	# # 1	# 5	# # # # # 1 1 1	#		
100			~ 00						
90				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
t		-					1		
80		• • • • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·		(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	
4			1 1 1				1		
70				ii.		N. E.			
70							1		
Ť		-				`\	1		
ษ 60†			er en en en en en en en en en en en en en	· · · · · · · · · · · · ·					
Percent Finer		:	1 1 1				1		
표 50			l l l 			1 I I I. 1	1 		
D CC		-					1		
Pe							1	1	
± 40					· · · · · · · · · · · · · · · · · · ·		 		
t		-							
30		• • • • • • • • • • • • •			$\cdots : \left\{ \begin{smallmatrix} 1 \\ 1 \\ 1 \end{smallmatrix} \right\}$		<u>.</u>	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	
1		-		1			1	1	
20									
20				1 1			1		
Ť							1		
			er er en de sterre de sterre	e de comp		n en la coloción.			
10+									
10+							1	1	
-			1 		- 1 - 1 - 1	 	1 1 1 1		
0		100	· · · · · · · · · · · · · · · · · · ·		1	0.1	 	0.01	0.
-)0	100			1 ain Size (mm)	0.1	1 1 1 1	0.01	0.
0			, , , , ' ' _' ', , 10	Gra	ain Size (mm)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.
0	00 % Cobl		· · · · · · · · · · · · · · · · · · ·	Gra			%Si	0.01	0.
0			, , , , ' ' _' ', , 10	Gra	ain Size (mm)		%Si		0.
0-100	% Cobl	ble	••••••••••••••••••••••••••••••••••••••	Gra	ain Size (mm) %Sand)	Coet	It & Clay Size 58.3 fficients	0.
0 100 eve Name	% Cobl Sieve Size, mr	Dle	% Gravel 6.7		ain Size (mm) %Sand		Coet	lt & Clay Size 58.3	0
0 + 100 eve Name 0.75 in	% Cobl Sieve Size, mr 19.00	n Percent Finer	% Gravel 6.7		ain Size (mm) %Sand) D ₈₅ =0.444	<u>Coe</u> f 9 mm	It & Clay Size 58.3 fficients D ₃₀ = N/A	0.
0 + 100 eve Name 0.75 in 0.5 in	% Cobi 	n Percent Finer	% Gravel 6.7		ain Size (mm) %Sand	D ₈₅ = 0.444 D ₆₀ = 0.084	<u>Coe</u> f 9 mm	It & Clay Size 58.3 fficients D ₃₀ = N/A D ₁₅ = N/A	0.
0 + 100 eve Name 0.75 in 0.5 in 0.375 in	% Cobi 	De	% Gravel 6.7		ain Size (mm) %Sand	D ₈₅ = 0.444 D ₆₀ = 0.084 D ₅₀ = N/A	<u>Coe</u> f 9 mm	It & Clay Size 58.3 Fficients D ₃₀ = N/A D ₁₅ = N/A D ₁₀ = N/A	0.
0 + 100 eve Name 0.75 in 0.5 in 0.375 in #4	% Cobi 	Percent Finer 100 97 97 97 93	% Gravel 6.7		ain Size (mm) %Sand	D ₈₅ = 0.444 D ₆₀ = 0.084	<u>Coe</u> f 9 mm	It & Clay Size 58.3 fficients D ₃₀ = N/A D ₁₅ = N/A	0.
0 + 100 eve Name 0.75 in 0.5 in 0.375 in #4 #10	% Cobi 	De Percent Finer 100 97 97 93 89	% Gravel 6.7		ain Size (mm) %Sand	D ₈₅ = 0.444 D ₆₀ = 0.084 D ₅₀ = N/A C _u = N/A	<u>Coe</u> 9 mm 5 mm	It & Clay Size 58.3 fficients $D_{30} = N/A$ $D_{15} = N/A$ $D_{10} = N/A$ $C_c = N/A$	0.
0 + 100 eve Name 0.75 in 0.5 in 0.375 in #4	% Cobi 	Percent Finer 100 97 97 97 93	% Gravel 6.7		ain Size (mm) %Sand	D ₈₅ = 0.444 D ₆₀ = 0.084 D ₅₀ = N/A C _u = N/A	<u>Coe</u> f 9 mm	It & Clay Size 58.3 fficients $D_{30} = N/A$ $D_{15} = N/A$ $D_{10} = N/A$ $C_c = N/A$	0.
0 + 100 eve Name 0.75 in 0.5 in 0.375 in #4 #10 #20	% Cobi Sieve Size, mr 19.00 12.50 9.50 4.75 2.00 0.85 0.42	De Percent Finer 100 97 97 93 89 87	% Gravel 6.7		ain Size (mm) %Sand	D ₈₅ = 0.444 D ₆₀ = 0.084 D ₅₀ = N/A C _u = N/A	<u>Coe</u> 9 mm 5 mm	It & Clay Size 58.3 fficients $D_{30} = N/A$ $D_{15} = N/A$ $D_{10} = N/A$ $C_c = N/A$	0.
0 + 100 eve Name 0.75 in 0.5 in 0.375 in #4 #10 #20 #40	% Cobi 	Percent Finer 100 97 97 97 93 89 87 85	% Gravel 6.7		ain Size (mm) %Sand	$D_{85} = 0.444$ $D_{60} = 0.084$ $D_{50} = N/A$ $C_{u} = N/A$ $A = 0.05$	9 mm 5 mm <u>Class</u> Sandy Lean	It & Clay Size 58.3 fficients $D_{30} = N/A$ $D_{15} = N/A$ $D_{10} = N/A$ $C_c = N/A$ sification CLAY (CL)	0.
0 + 100 200 + 0.75 in 0.5 in 0.375 in #4 #10 #20 #40 #40 #60	% Cobi Sieve Size, mr 19.00 12.50 9.50 4.75 2.00 0.85 0.42 0.25	De Percent Finer 100 97 97 93 89 87 85 82	% Gravel 6.7		ain Size (mm) %Sand	$D_{85} = 0.444$ $D_{60} = 0.084$ $D_{50} = N/A$ $C_{u} = N/A$ $A = 0.05$	9 mm 5 mm <u>Class</u> Sandy Lean	It & Clay Size 58.3 fficients $D_{30} = N/A$ $D_{15} = N/A$ $D_{10} = N/A$ $C_c = N/A$	0.
0 + 100 200 + 100 200 + 200 +	% Cobi Sieve Size, mr 19.00 12.50 9.50 4.75 2.00 0.85 0.42 0.25 0.15	Percent Finer 100 97 97 93 89 87 85 82 68	% Gravel 6.7		ain Size (mm) %Sand	$D_{85} = 0.444$ $D_{60} = 0.084$ $D_{50} = N/A$ $C_{u} = N/A$ $A = 0.05$	9 mm 5 mm <u>Class</u> Sandy Lean	It & Clay Size 58.3 fficients $D_{30} = N/A$ $D_{15} = N/A$ $D_{10} = N/A$ $C_c = N/A$ sification CLAY (CL)	
0 + 100 200 + 0.75 in 0.5 in 0.375 in #4 #10 #20 #40 #60 #100 #140	% Cobi Sieve Size, mr 19.00 12.50 9.50 4.75 2.00 0.85 0.42 0.25 0.15 0.11	De Percent Finer 100 97 97 93 89 89 85 85 82 68 63	% Gravel 6.7		ain Size (mm) %Sand	$D_{85} = 0.444$ $D_{60} = 0.084$ $D_{50} = N/A$ $C_{u} = N/A$ $ASTM$ $ASTM$ $AASHTO$	<u>Coe</u> 9 mm 5 mm 5 mm Sandy Lean Clayey Soils	It & Clay Size 58.3 fficients $D_{30} = N/A$ $D_{15} = N/A$ $D_{10} = N/A$ $C_c = N/A$ sification CLAY (CL)	

	Client:	AECOM						
	Project:	CHGE NWS	5					
ng	Location:	Poughkeep	osie, NY				Project No:	GTX-311893
II9	Boring ID:			Samp	ole Type:	bag	Tested By:	ckg
	Sample ID:	: PSB-5		Test	Date:	06/22/20	Checked By:	bfs
	Depth :	8-10		Test	[d:	560362		
	Test Comm	ent:						
	Visual Desc	cription:	Wet, very d	ark gray	clay with	n sand		
	Sample Co	mment:						
Pa	rticle	Size	Analy	sis ·	- AS	TM D	6913	
			/					
		Li Li				~ ~ ~		
		37!	4 10	0	0 Q	00 140 200		
		8	# # 1 4	#20	#40 #60	# # #		
					-òò-			
		. I 1		. T . I	\downarrow \downarrow	``\` !!!	1	
	•••	· · · · · · · · · · · · · · · · · · ·		a sulfations a f	- I I			
	-	1		1		- Ai		

10	0		0.375 in	#4 #10	#20 #40	#60 #100 #140	# 200	
10	0			$\dot{\rho}$				
9	0+			i i Isaa sa kata sa	i i	İīŊi		
		-	4 5			- X		
8	0+				4	[[]		
	ł		j.	 I I	i i		6	
7	0+			¦		\cdots		
	ł		-1 -1 -2					
<u>ہ</u> 60	0+		· · · · · · · · · · · · · · · · · · ·			· · ·] · · ·] · ·]; ·		
ЦЦ	+		j.	 I I	i i			
5 Sent	0+		b	la constante. La constante	(1) - 1		1	
Percent Finer	t		-1 -1 -5					
4	0+			II I I I I	landa an la la la la la la la la la la la la la	· · · I · · · I · · I, · I I I I I I I		
	_ [†]		i.		i i			
30	0			i i i I I I I I				
0			4					
20				1		1 1 C		
1				1 I I I 4				
Į.	°_		1					
ſ	0		.ı 	1 I 1 1	. I I I	і і і. і_,ці,	· · · · · · · · · · · · · · · · · · ·	
1	1000	100	10		1	0.1	0.01	0.0
				Grain	Size (mm)			
	% Co	bble	% Gravel	9	6 Sand		% Silt & Clay Size	
	-	-	1.4		24.2		74.4	
eve Nam	ne Sieve Size, n	nm Percent Finer	Spec. Percent C	omplies			Coefficients	
	,							
						D ₈₅ =0.09	53 mm $D_{30} = N/A$	
0.375 in	9.50	100				$D_{85} = 0.09$ $D_{60} = N/A$	53 mm D ₃₀ = N/A D ₁₅ = N/A	
		100 99 97						
0.375 in #4 #10 #20	9.50 4.75 2.00 0.85	99 97 97 97				D ₆₀ =N/A	D ₁₅ =N/A	
0.375 in #4 #10 #20 #40	9.50 4.75 2.00 0.85 0.42	99 97 97 97 97				$D_{60} = N/A$ $D_{50} = N/A$ $C_u = N/A$	$D_{15} = N/A$ $D_{10} = N/A$ $C_{c} = N/A$	
0.375 in #4 #10 #20	9.50 4.75 2.00 0.85	99 97 97 97				$D_{60} = N/A$ $D_{50} = N/A$ $C_u = N/A$	$D_{15} = N/A$ $D_{10} = N/A$	
0.375 in #4 #10 #20 #40 #60 #100 #140	9.50 4.75 2.00 0.85 0.42 0.25 0.15 0.11	99 97 97 97 97 96 96 89				$D_{60} = N/A$ $D_{50} = N/A$ $C_u = N/A$	$D_{15} = N/A$ $D_{10} = N/A$ $C_{c} = N/A$	
0.375 in #4 #10 #20 #40 #60 #100	9.50 4.75 2.00 0.85 0.42 0.25 0.15	99 97 97 97 97 96 96				$D_{60} = N/A$ $D_{50} = N/A$ $C_u = N/A$ $ASTM$	$D_{15} = N/A$ $D_{10} = N/A$ $C_{c} = N/A$	

Sand/Gravel Particle Shape : ---

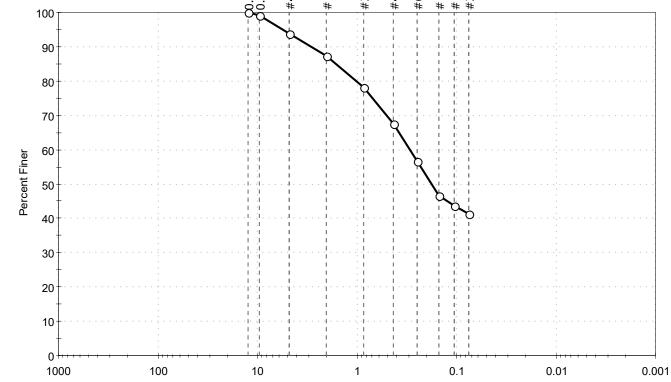
Percent Finer

		150011						
	Client:	AECOM						
	Project:	CHGE NW	S					
ting	Location:	Poughkee	psie, NY				Project No:	GTX-311893
	Boring ID:			San	nple Type:	bag	Tested By:	ckg
	Sample ID:	: PSB-5		Test	Date:	06/23/20	Checked By:	bfs
	Depth :	10-12		Test	:Id:	560361		
	Test Comm	ent:						
	Visual Desc	cription:	Wet, very	dark gra	y clay			
	Sample Co		,	5				
Pa	rticle	Size	Analy	/sis	- AS	TM D	6913	
			/		/ .0		0710	
		<u> </u>						
		.375 in	_	_	~ ~	8 5 8		
		ί.	# # 10	#20)#40)#60	f100 f140 f200		
				,		- 0 - 6 -		
		ji J	Î Î	1 1	Í Í I I			
		4 				i P.Ť.		
		i i		1	i i			
	1	į.			i i			
			· · · ¦· · · · · ¦·			i di i bi di i i Li bi l		
		1		1				
		i.				i i i		
		1						
			1	· · · · · · · · · · · · · · · · · · ·				
	1	į		; į	i i	- <u>-</u>		
						a de a Professio		

Grain Size (mm)

_									_
	% Cobb	le		% Gravel		% Sand		% Silt & Clay Size	
			0.2			4.7		95.1]
Sieve Name	Sieve Size, mm	Percent	t Finer	Spec. Percent	Complie	25	D ₈₅ =N/A	Coefficients D ₃₀ = N/A	
0.375 in	9.50	10	0						
#4	4.75	10	0				$D_{60} = N/A$	$D_{15} = N/A$	
#10	2.00	10	0				D ₅₀ = N/A	D ₁₀ =N/A	
#20	0.85	10	0				$C_{u} = N/A$	C _c =N/A	
#40	0.42	10	0						
#60	0.25	10	0				ACTM	Classification	
#100	0.15	10	0				<u>ASTM</u>	Fat CLAY (CH)	
#140	0.11	99	Ð						
#200	0.075	95	5				AASHTO	Clayey Soils (A-7-6 (29))	
		1		11			Sand/Cra	Sample/Test Description vel Particle Shape :	
							Janu/Gra		

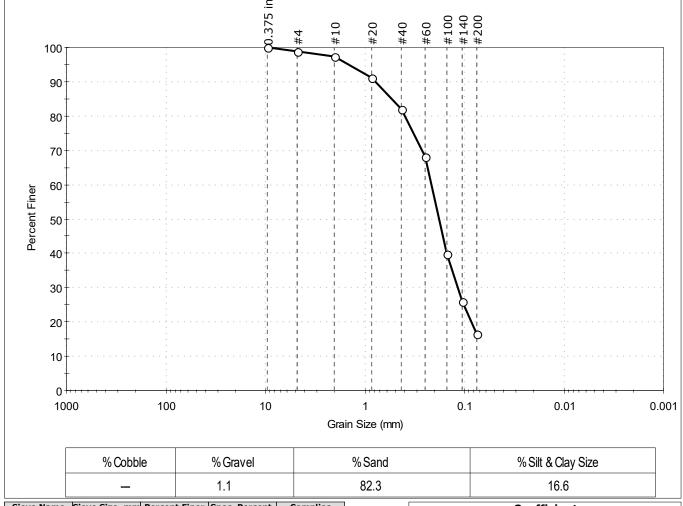
Sand/Gravel Hardness : ---


0.1

0.01

0.001

	Client:	AECOM									
	Project:	CHGE NWS	5								
ng -	Location:	Poughkeep	osie, NY						Project No:	G	TX-311893
9	Boring ID:				Samp	le Typ	be: t	ag	Tested By:	ckg	
	Sample ID:	PSB-7			Test [Date:	(6/23/20	Checked By:	bfs	
	Depth :	2-4			Test I	d:	5	60360			
	Test Comm	ent:									
	Visual Desc	ription:	Wet, ver	y darl	k gray	claye	y sar	nd			
	Sample Cor	nment:									
D -		<u>C:</u>	A		• -	^					
Ра	rticle	Size	Anai	ys	IS -	·A	5	ML	06913		
		. <u>c</u>									
				_	_	_	c	000			
		5 in 375	44	¢10	≠20	£40	490 F	414 420			



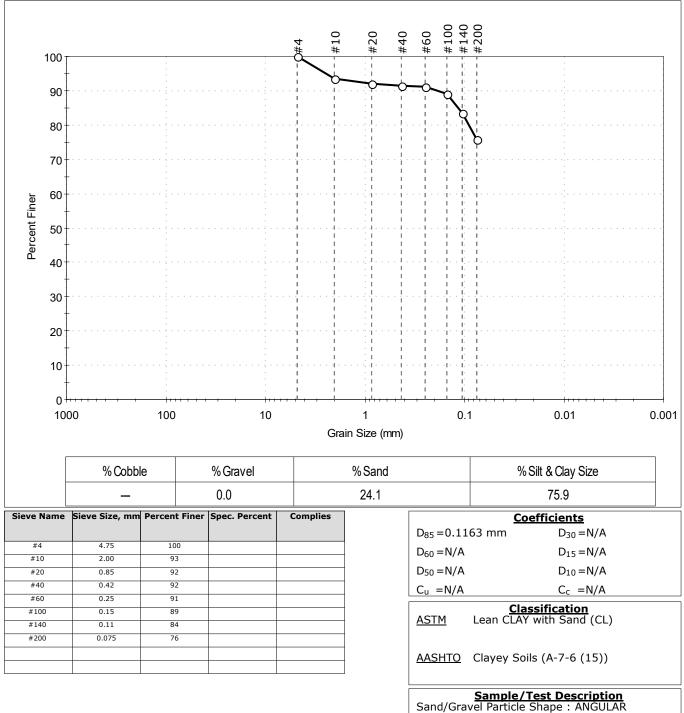
Grain Size (mm)

	% Cobb	e		% Gravel		% Sand		% Sil	t & Clay Size	
	_			6.3		52.4			41.3	
Sieve Name	Sieve Size, mm	Percent	t Finer	Spec. Percent	Complies		Coefficients D ₈₅ = 1.6020 mm D ₃₀ = N/A			
0.5 in	12.50	10	-				D ₆₀ = 0.29	38 mm	$D_{15} = N/A$	
0.375 in #4	9.50	99				-	D ₅₀ = 0.17	$D_{50} = 0.1789 \text{ mm}$ $D_{10} = 0.1789 \text{ mm}$		
#10	2.00	87	7				$C_u = N/A$		$C_c = N/A$	
#20	0.85	78						Class	ification	
#40 #60	0.42	68 57					<u>ASTM</u>	Clayey SAND		
#100	0.15	46	5			-				
#140	0.11	44	4			-	AASHTO	Clayey Soils	(4-7-6 (7))	
#200	0.075	41	1			-	<u>////om/o</u>		((() 0 ()))	
								Sample/Te vel Particle Sh vel Hardness	ast Description hape : ANGULAR	

_							
	Client:	AECOM					
	Project:	CHGE NWS	5				
Ig	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
' 9	Boring ID:			Sample Type:	bag	Tested By:	ckg
	Sample ID:	PSB-7		Test Date:	06/23/20	Checked By:	bfs
	Depth :	4-6		Test Id:	560359		
ſ	Test Comm	ent:					
	Visual Desc	ription:	Moist, very da	rk gray silty sa	nd		
	Sample Cor	nment:					
D -		C:	A			CO12	
Ра	rticle	Size	Analys	<u>is - AS</u>		6913	
		. <u>c</u>					
		2. 			000		

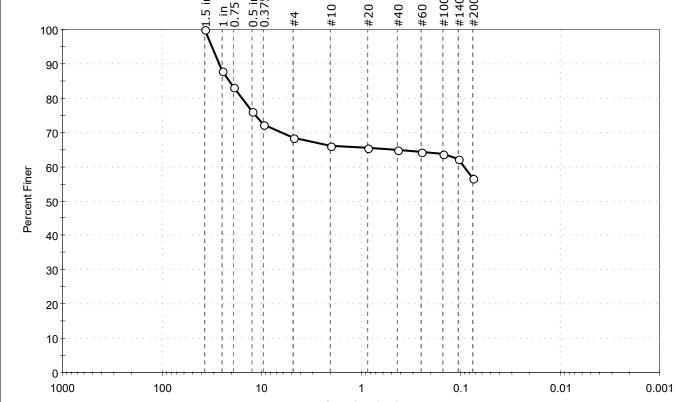
Sieve Name	Sieve Size, mm	Percent Finer	Spec. Percent	Complies
0.375 in	9.50	100		
#4	4.75	99		
#10	2.00	97		
#20	0.85	91		
#40	0.42	82		
#60	0.25	68		
#100	0.15	40		
#140	0.11	26		
#200	0.075	17		

	<u>Coeffi</u>	<u>cients</u>	
D ₈₅ = 0.532	27 mm	D ₃₀ =0.1173 mm	
D ₆₀ =0.21	58 mm	$D_{15} = N/A$	
D ₅₀ = 0.18	01 mm	$D_{10} = N/A$	
$C_{II} = N/A$		$C_{c} = N/A$	


<u>Classification</u><u>ASTM</u>Silty SAND (SM)

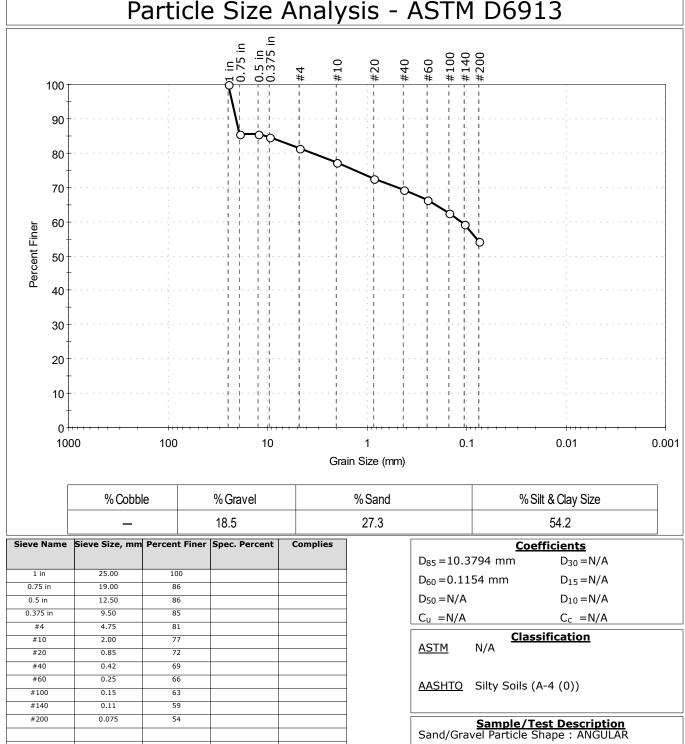
 \underline{AASHTO} Silty Gravel and Sand (A-2-4 (0))

Sample/Test Description Sand/Gravel Particle Shape : ---


	Client:	AECOM					
	Project:	CHGE NWS	5				
Ŋ.	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
9	Boring ID:			Sample Type:	bag	Tested By:	ckg
	Sample ID:	PSB-7		Test Date:	06/22/20	Checked By:	bfs
	Depth :	6-8		Test Id:	560358		
Γ	Test Comm	ent:					
	Visual Desc	ription:	Wet, very dark	c gray clay with	n sand		
	Sample Cor	nment:					
		<u><u> </u></u>	A 1			CO1 2	
Ра	rticle	Size	Analys	is - AS	IM D	6913	

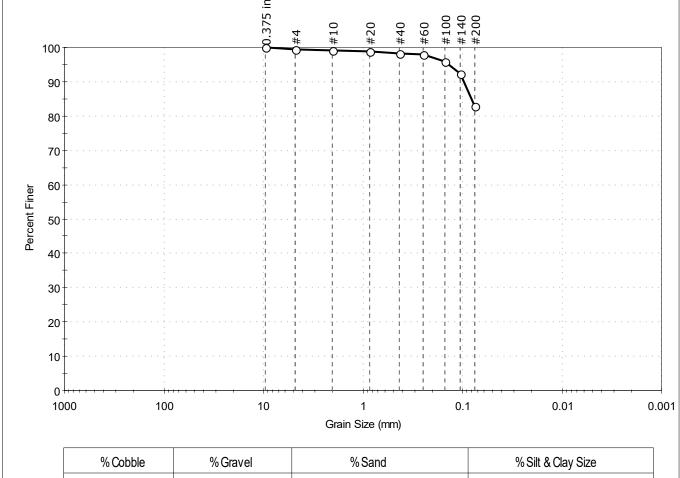
Sand/Gravel Particle Shape : ANGU Sand/Gravel Hardness : HARD

-							
	Client:	AECOM					
	Project:	CHGE NWS	5				
ñ	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
g	Boring ID:			Sample Type:	bag	Tested By:	ckg
	Sample ID:	PSB-7		Test Date:	06/23/20	Checked By:	bfs
	Depth :	10-12		Test Id:	560357		
ſ	Test Comm	ent:					
	Visual Desc	ription:	Moist, very da	ark gray gravell	y clay		
	Sample Cor	nment:					
Pa	rticle	Size	Analys	sis - AS	TM D	6913	
		<u> </u>					
		⊑					
	⊒.	3 i i	-		0000		
	Ω.	.ΞĽ u'n	4 10	20 40 60	10 14 20		



Grain Size ((mm)
--------------	------

	% Cobbl	e	% Gravel		% Sand	9	% Silt & Clay Size		
	- 3		31.6	31.6			56.5		
Sieve Name	Sieve Size, mm Percent Finer Spec. Percent		Complies]	<u>C</u>	oefficients			
					D ₈₅ =21.1906 mm D ₃₀ =N/A				
1.5 in	37.50	100			_	D ₆₀ = 0.0930 mm	$D_{15} = N/A$		
1 in 0.75 in	25.00 19.00	88			-	D ₅₀ = N/A	$D_{10} = N/A$		
0.75 m	19.00	76			-				
0.375 in	9.50	70			-	$C_u = N/A$	$C_c = N/A$		
#4	4.75	68			-	Cla	assification		
#10	2.00	66			-	ASTM Gravelly Le	Lean CLAY (CL)		
#20	0.85	65			-				
#40	0.42	65			-	AASHTO Clayey So	$a_{1} = (A - 6 (5))$		
#60	0.25	64]				
#100	0.15	64							
#140	0.11	62			_	Sample	Test Description		
#200	0.075	57			-	Sand/Gravel Particle	e Shape : ANGULAR		
					4	Sand/Gravel Hardne	ess : HARD		


1	Client:	AECOM							
	Project:	CHGE NWS	5						
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893		
9	Boring ID:			Sample Type:	bag	Tested By:	ckg		
	Sample ID:	PSB-8		Test Date:	06/24/20	Checked By:	bfs		
	Depth :	4-6		Test Id:	560356				
	Test Comm	ent:							
	Visual Desc	ription:	Moist, very da	rk gray sandy	silt with gra	vel			
	Sample Cor	mment:							
	Particle Size Analysis - ASTM D6913								
-a	rticle	Size	Analys	is - AS		6913			
-									

Sand/Gravel Hardness : HARD

	Client:	AECOM							
	Project:	CHGE NWS	5						
Â	Location:	Poughkeep	osie, NY			Project No:	GTX-311893		
g	Boring ID:			Sample Type:	bag	Tested By:	ckg		
	Sample ID:	PSB-8		Test Date:	06/23/20	Checked By:	bfs		
	Depth :	6-8		Test Id:	560355				
	Test Comm	ent:							
	Visual Desc	ription:	Moist, very da	ark gray clay wi	th sand				
	Sample Cor	mment:							
Particle Size Analysis - ASTM D6913									
		۲							

	% Cobble		% Cobble % Gravel % Sand				% Silt a	& Clay Size	
	- 0.		0.6		16.4			83.0	
Sieve Name	Sieve Size, mm Percent Finer Sp		er Spec. Percent	Complies	nplies		Coefficients		
						D ₈₅ =0.08	09 mm	$D_{30} = N/A$	
0.375 in	9.50	100				$D_{60} = N/A$		$D_{15} = N/A$	
#4	4.75	99						,	
#10	2.00	99				D ₅₀ = N/A		$D_{10} = N/A$	
#20	0.85	99				$C_u = N/A$		$C_c = N/A$	
#40	0.42	98			7	<u> </u>	<u> </u>		
#60	0.25	98			1	ACTM		ication	
#100	0.15	96			1	<u>ASTM</u>	Lean CLAY wit	iii Saliu (CL)	
#140	0.11	92							
#200	0.075	83			1		Clayey Soils (N-7-6 (16))	
					1	AASIIIO	Clayey Solis (H-7-0 (10))	
					1				
		1				Sand/Grav	Sample/Tes /el Particle Sha	t Description	
						Sand/Grav	vel Hardness :		

Percent Finer

1	Client:	AECOM						
	Project:	CHGE NW	IC .					
	-						Durada at Max	CTV 211002
ting		Location: Poughkeepsie, NY					Project No:	GTX-311893
	Boring ID:				Sample Type		Tested By:	ckg
	Sample ID:				Test Date:	06/22/20	Checked By:	bfs
	Depth :	10-12			Test Id:	560354		
	Test Comm	ent:						
	Visual Desc	ription:	Wet, ve	ry dark	gray clay			
	Sample Co				5 , ,			
l								
Pa	rticla	Size	Δna	lvci	s - AS		6913	
тu		JIZC	And	1951	5 AC		0715	
		.9						
						\circ \circ \circ		
		0.375	.+	#10	#20 #40 #60	100 140 200		
		8	#4	#	# # #	# # #		
		 .:		- ç	$\sim \sim \sim \sim$			
	1	ा ।		1				
	• • • • • • • • • • • •				operation provide	.		
	-	-1	i i	i				
) 	1					
		1	1	1				
		i.	i	i	ti i i	i i i		
				. ¦	; <u> </u>			
		i i		1				
		j.	i	i	;i i i	i çi		
			1	1	· · · · · · · · · · · · · · · · · · ·			
	1	1		1				
					șii.	a de a Real de ca		
) 1		I I				
		1	1	1	(I. I. I.	E E E		

Grain Size (mm)

-							1	_
	% Cobble %		% Gravel		% Sand		% Silt & Clay Size	
_			0.6	0.6 7.3			92.1	
Sieve Name	Sieve Size, mm	Percent Fi	iner Spec. Percent	Complies			Coefficients	
						$D_{85} = N/A$	D ₃₀ =N/A	
0.375 in	9.50	100				$D_{60} = N/A$	D ₁₅ =N/A	
#4	4.75	99						
#10	2.00	99				D ₅₀ = N/A	$D_{10} = N/A$	
#20	0.85	99			1	$C_{u} = N/A$	$C_{c} = N/A$	
#40	0.42	99				<u> </u>	- · · · ·	
#60	0.25	98			1		Classification	
#100	0.15	98				<u>ASTM</u>	Fat CLAY (CH)	
#140	0.11	96			1			
#200	0.075	92			1		Clayey Soils (A-7-6 (32))	
					-			
		1]	Sand/Gra	Sample/Test Description vel Particle Shape : ANGULAR	

Sand/Gravel Hardness : HARD

0.1

0.01

0.001

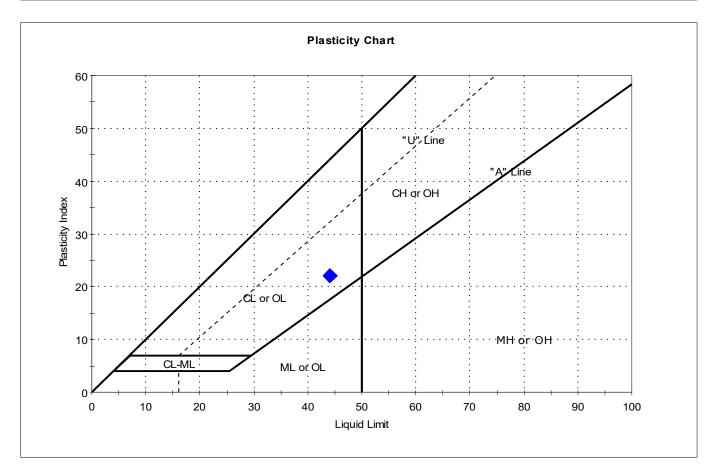
100

	Client:	AECOM										
	Project:	CHGE NW	S									
Ň	Location:	Poughkee	psie, NY				Project No:	GTX-311893				
9	Boring ID:				Sample T	ype: bag	Tested By:	ckg				
	Sample ID	: PSB-8			Test Date	: 06/22/20	Checked By:	bfs				
	Depth :	12-14			Test Id:	560353						
	Test Comm	ent:										
	Visual Deso	cription:	Moist,	very da	ark gray cla	ay with sand						
	Sample Co	•	'	,	5,	,						
	oumpie oo											
Da			۸na	مايرد	ric - /		16013					
Pa			Ana	alys	sis - A	ASTM [06913					
Pa			Ana	alys	sis - A	ASTM [06913					
Pa			Ana	alys	sis - A		06913					
Pa		Size		_		000	06913					
Pa		Size	Ana [*]	alys	#20 #40	000	06913					
Pa		Size	4	10		000	06913					
Pa		Size	4	10		000	06913					
Pa		Size	4	10		000	06913					
Pa		Size	4	10		000	06913					

	90 80 70								
Percent Finer	60 50								
Percel	40				، ۱ ، ۱ ۱ ، ۱ ، ۱ ۱ ، ۱ ، ۱ ، ۱ ۱	 			
	30 20								
	10								
	0 [‡] 100)0	100	, , ,' ' _' ,, 10	 Gi	1 1 rain Size (mm)	0.1	1 0.01	0.001
		% Cobbl	e	% Gravel		% Sand		% Silt & Clay Size	
		-		4.7		13.7		81.6	
Sieve I				r Spec. Percent	Complies		D ₈₅ =0.08	60 mm D ₃₀ =N/A	
0.75		19.00	100				D ₆₀ = N/A	D ₁₅ =N/A	
0.5 i 0.375		12.50 9.50	97 97			4	D ₅₀ = N/A	D ₁₀ = N/A	
#4		4.75	95						
#10	0	2.00	94			-	C _u =N/A	C _c =N/A	
#20		0.85	94				ASTM	<u>Classification</u> Fat CLAY with Sand (CH)	
#40		0.42	94				ASTM	Tat CLAT WILL Salu (CH)	
#60		0.25	93			_			
#10 #14		0.15	93 90			-	AASHTO	Clayey Soils (A-7-6 (29))	
#14	~	0.11	50						

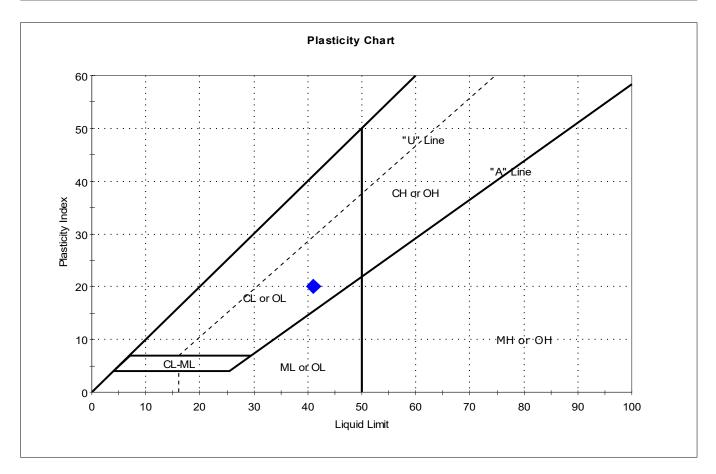
Sand/Gravel Particle Shape : ANGULAR

Sand/Gravel Hardness : HARD

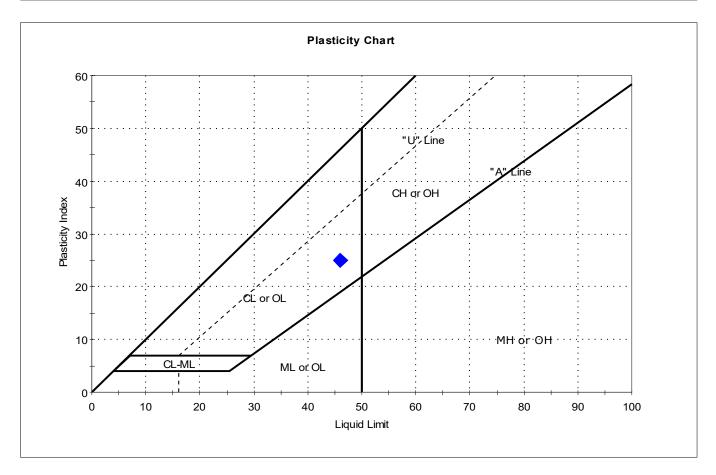

0.075

82

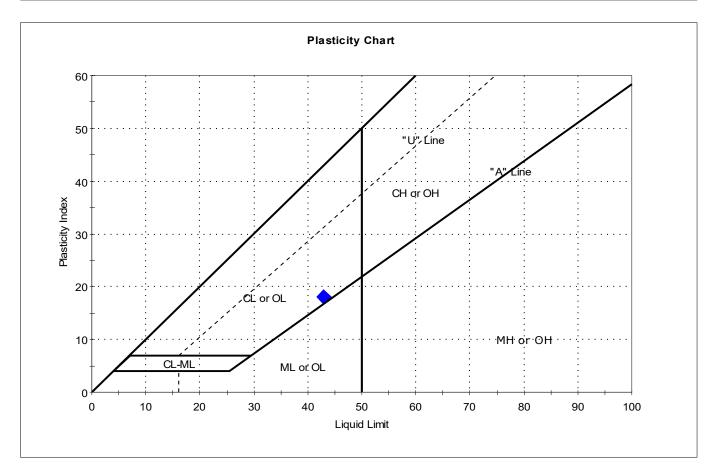
#200


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
1	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-1		Test Date:	06/22/20	Checked By:	bfs
	Depth :	0-2		Test Id:	560400		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very dark	k gray clay with	n sand		
	Sample Cor	nment:					

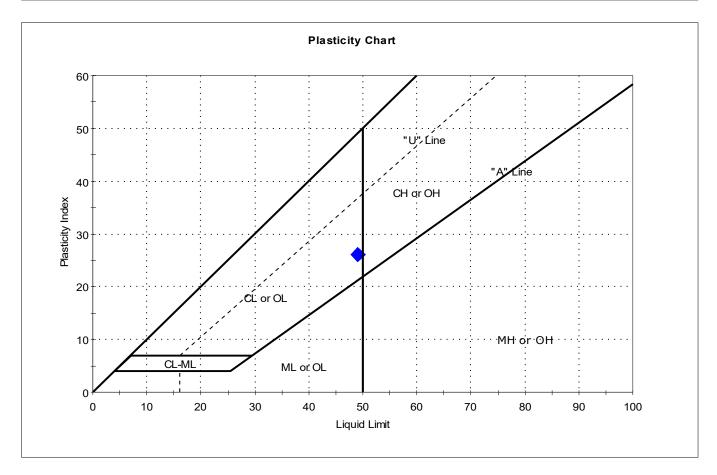
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-1		0-2	65	44	22	22	1.9	Lean CLAY with Sand (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
5	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-1		Test Date:	06/24/20	Checked By:	bfs
	Depth :	2-4		Test Id:	560399		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, very da	ark gray sandy	clay		
	Sample Cor	mment:					

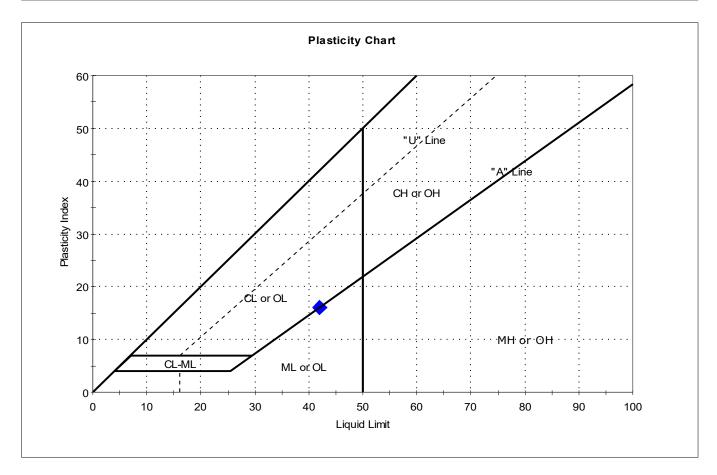
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-1		2-4	41	41	21	20	1	Sandy Lean CLAY (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
1	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-1		Test Date:	06/24/20	Checked By:	bfs
	Depth :	6-8		Test Id:	560398		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very darl	k gray clay with	n sand		
	Sample Cor	nment:					

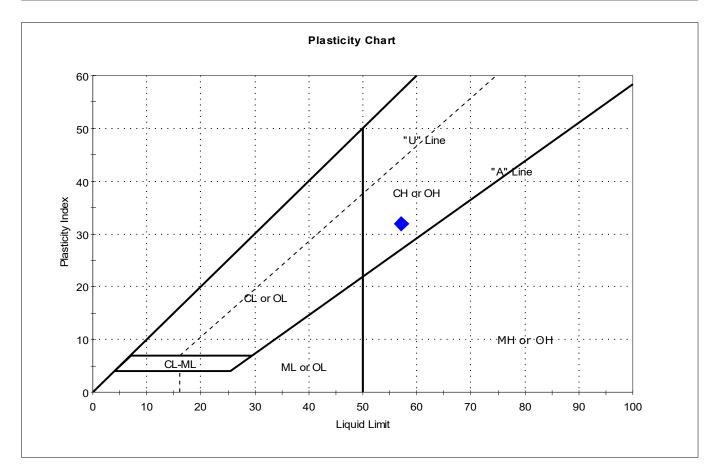
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-1		6-8	52	46	21	25	1.3	Lean CLAY with Sand (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
9	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-1		Test Date:	06/23/20	Checked By:	bfs
	Depth :	8-10		Test Id:	560397		
	Test Comm	ent:					
	Visual Desc	cription:	Wet, very dar	k gray clay with	n sand		
	Sample Cor	mment:					

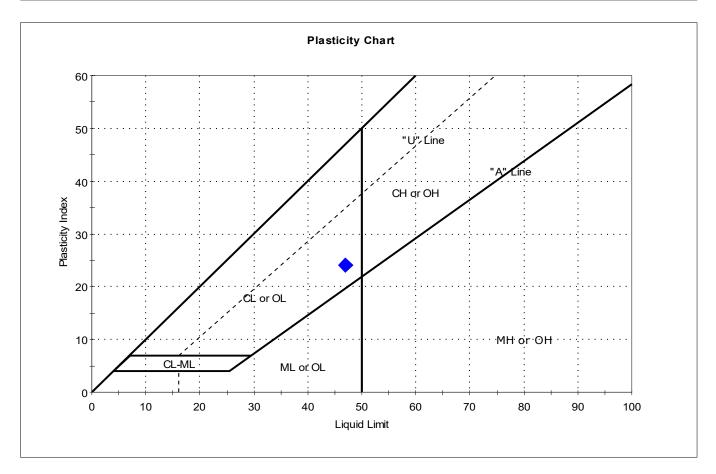
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-1		8-10	59	43	25	18	1.9	Lean CLAY with Sand (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
N	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
9	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-1		Test Date:	06/23/20	Checked By:	bfs
	Depth :	12-14		Test Id:	560396		
Ī	Test Comm	ent:					
	Visual Desc	ription:	Wet, very darl	k gray clay			
	Sample Cor	nment:					
-							

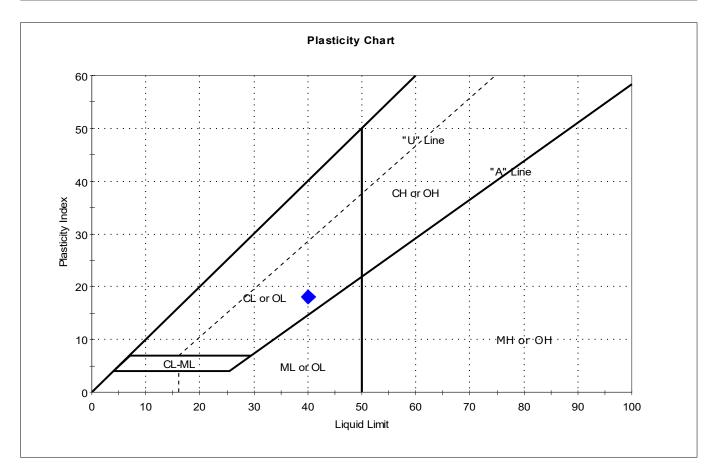
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-1		12-14	60	49	23	26	1.4	Lean CLAY (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
9	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-2		Test Date:	06/24/20	Checked By:	bfs
	Depth :	8-10		Test Id:	560395		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very darl	< gray silt with	sand		
	Sample Cor	mment:					

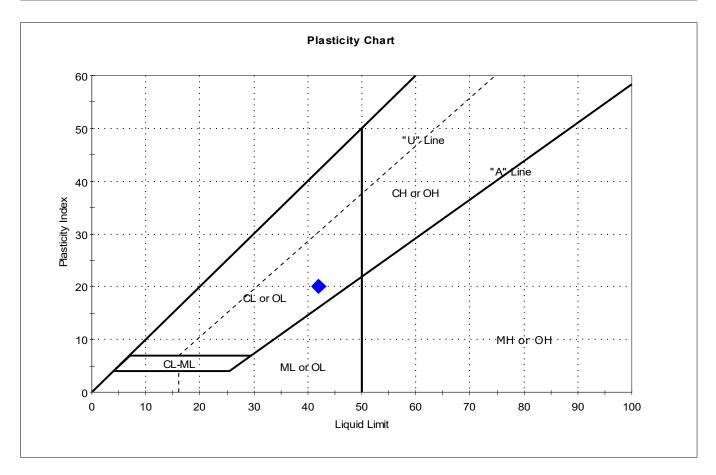
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-2		8-10	62	42	26	16	2.2	SILT with Sand (ML)


	Client:	AECOM					
	Project:	CHGE NWS	5				
N	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
9	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-2		Test Date:	06/23/20	Checked By:	bfs
	Depth :	12-14		Test Id:	560394		
Ī	Test Comm	ent:					
	Visual Desc	ription:	Wet, very darl	k gray clay			
	Sample Cor	nment:					
-							

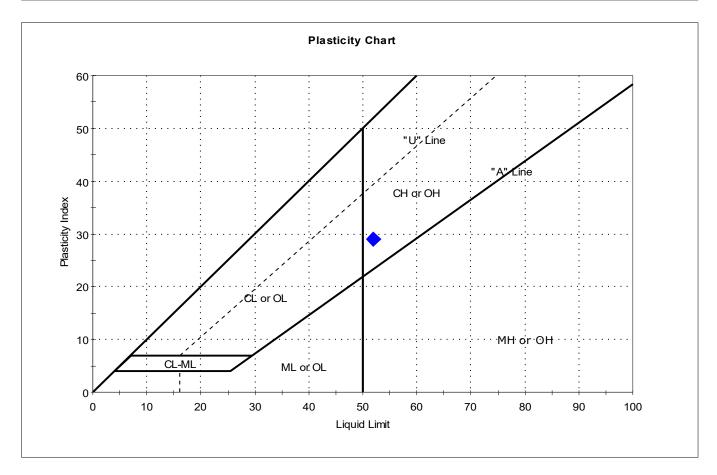
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-2		12-14	64	57	25	32	1.2	Fat CLAY (CH)


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
)	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-3		Test Date:	06/23/20	Checked By:	bfs
	Depth :	6-8		Test Id:	560393		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, very da	rk gray gravell	y clay with	sand	
	Sample Cor	nment:					

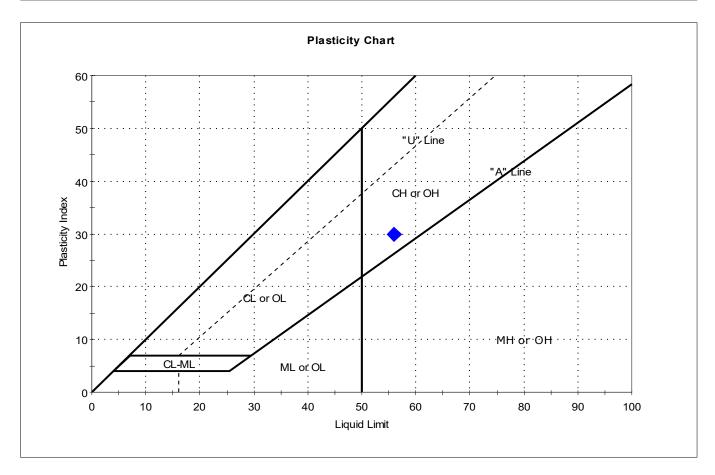
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-3		6-8	38	47	23	24	0.6	Gravelly Lean CLAY with Sand (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
1	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-4		Test Date:	06/23/20	Checked By:	bfs
	Depth :	4-6		Test Id:	560392		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very dar	k gray clay with	n sand		
	Sample Cor	mment:					

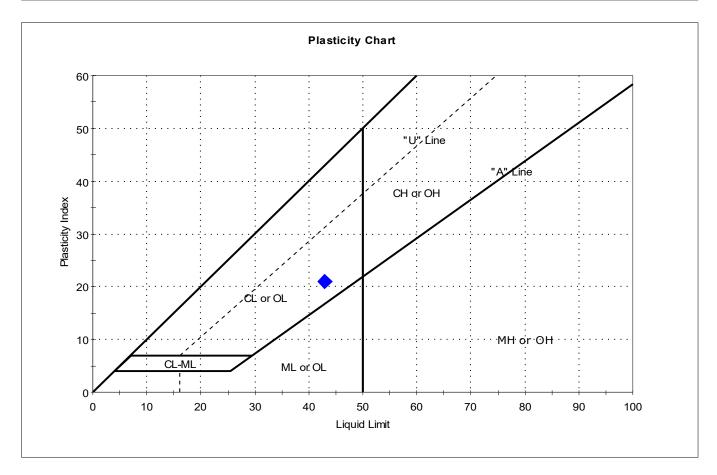
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-4		4-6	67	40	22	18	2.5	Lean CLAY with Sand (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
9	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-4		Test Date:	06/23/20	Checked By:	bfs
	Depth :	10-12		Test Id:	560391		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very dar	k gray clay with	n sand		
	Sample Cor	mment:					

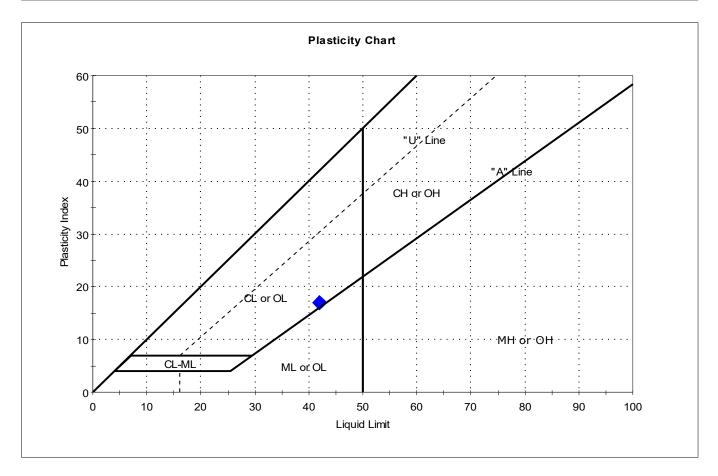
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-4		10-12	54	42	22	20	1.6	Lean CLAY with Sand (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
Ň	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
g	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-4		Test Date:	06/23/20	Checked By:	bfs
	Depth :	12-14		Test Id:	560390		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very darl	< gray clay			
	Sample Cor	nment:					

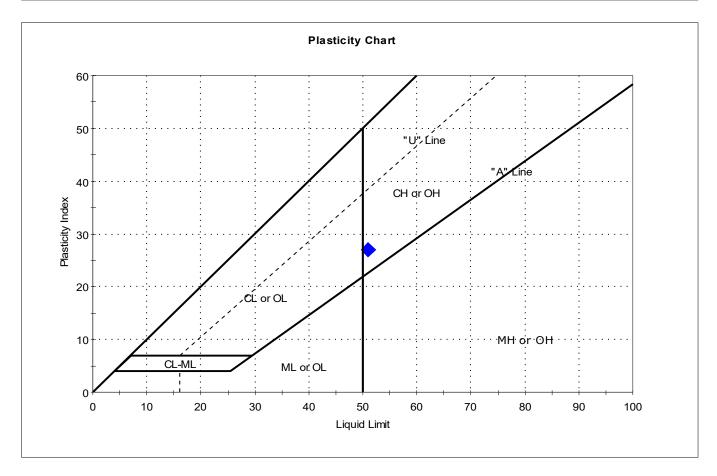
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-4		12-14	59	52	23	29	1.2	Fat CLAY (CH)


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
1	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-5		Test Date:	06/24/20	Checked By:	bfs
	Depth :	0-2		Test Id:	560389		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very dark	k gray clay with	n sand		
	Sample Cor	nment:					

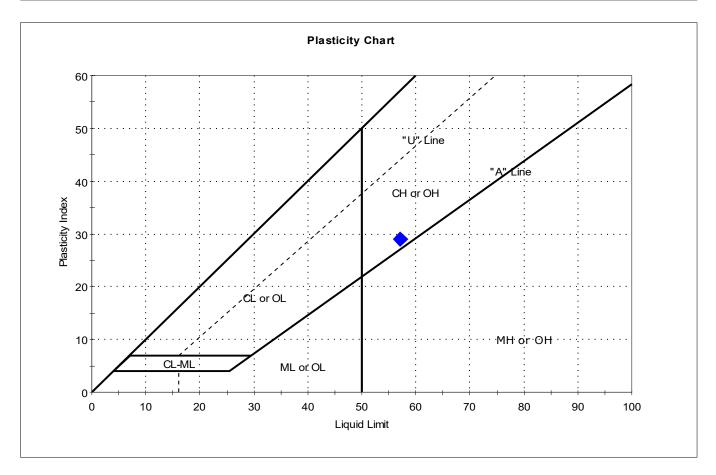
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-5		0-2	81	56	26	30	1.8	Fat CLAY with Sand (CH)


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
1	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-5		Test Date:	06/23/20	Checked By:	bfs
	Depth :	2-4		Test Id:	560388		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very darl	k gray sandy cl	ау		
	Sample Cor	mment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-5		2-4	54	43	22	21	1.5	Sandy Lean CLAY (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
9	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-5		Test Date:	06/23/20	Checked By:	bfs
	Depth :	8-10		Test Id:	560387		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very darl	k gray clay with	n sand		
	Sample Co	mment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-5		8-10	53	42	25	17	1.6	Lean CLAY with Sand (CL)

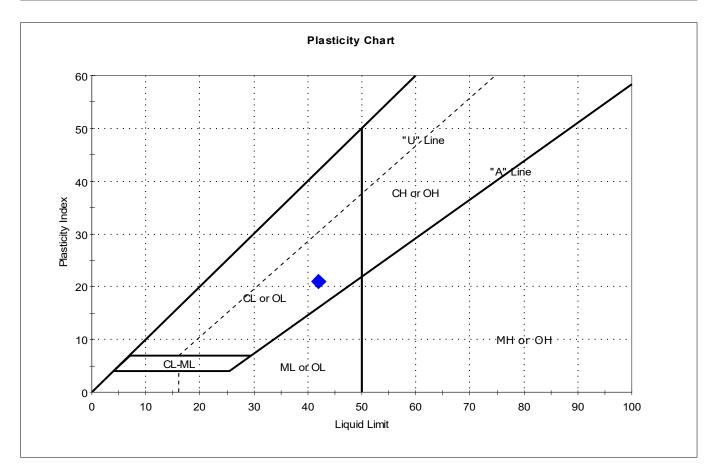

	Client:	AECOM					
	Project:	CHGE NWS	5				
ñ	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
9	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-5		Test Date:	06/24/20	Checked By:	bfs
	Depth :	10-12		Test Id:	560386		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very darl	k gray clay			
	Sample Cor	nment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-5		10-12	62	51	24	27	1.4	Fat CLAY (CH)

	Client:	AECOM					
	Project:	CHGE NWS	5				
J	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
5	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-7		Test Date:	06/24/20	Checked By:	bfs
	Depth :	2-4		Test Id:	560385		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very darl	k gray clayey s	and		
	Sample Cor	nment:					

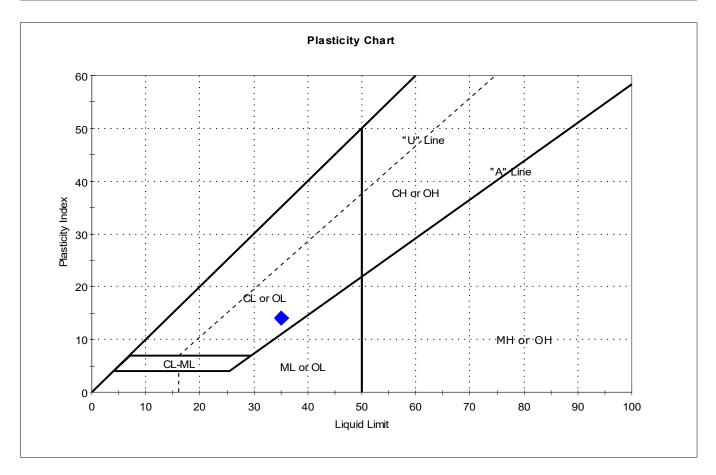
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-7		2-4	65	57	28	29	1.3	Clayey SAND (SC)

Client:	AECOM					
Project:	CHGE NWS	5				
Location:	Poughkeep	osie, NY			Project No:	GTX-311893
Boring ID:			Sample Type:	bag	Tested By:	cam
Sample ID:	PSB-7		Test Date:	06/22/20	Checked By:	bfs
Depth :	4-6		Test Id:	560384		
Test Comm	ent:					
Visual Desc	cription:	Moist, very d	ark gray silty sa	and		
Sample Co	mment:					
•						

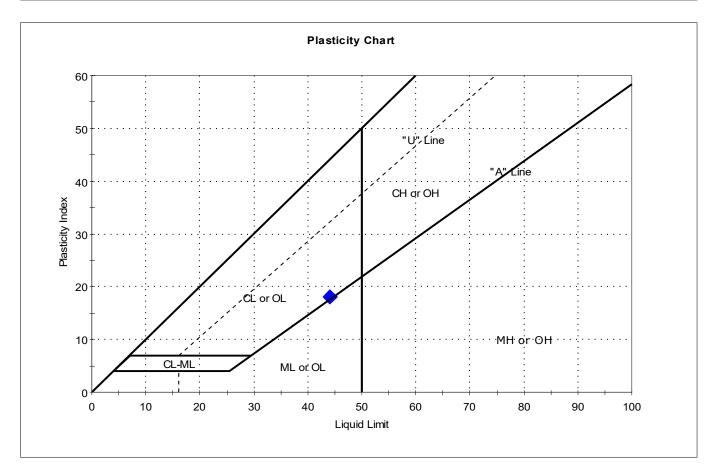

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-7		4-6	58	n/a	n/a	n/a	n/a	Silty SAND (SM)

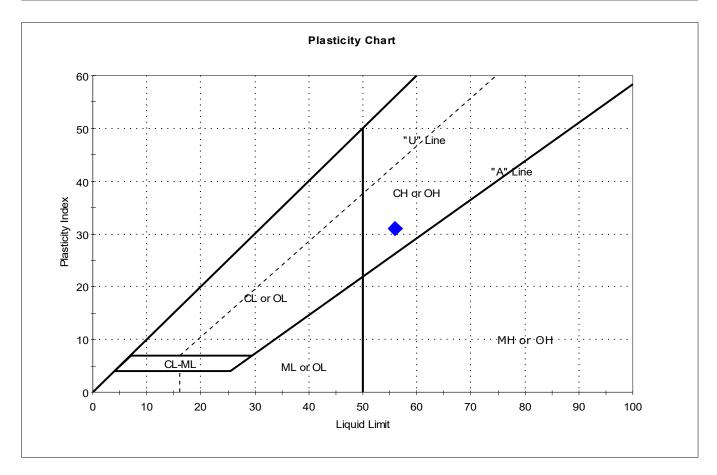
18% Retained on #40 Sieve Dry Strength: LOW Dilatancy: RAPID Toughness: n/a The sample was determined to be Non-Plastic


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
1	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-7		Test Date:	06/24/20	Checked By:	bfs
	Depth :	6-8		Test Id:	560383		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very darl	k gray clay with	i sand		
	Sample Cor	mment:					

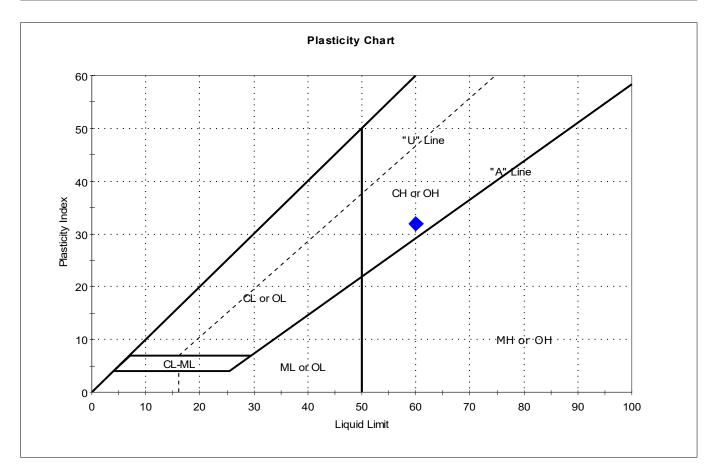
Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-7		6-8	50	42	21	21	1.4	Lean CLAY with Sand (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
Ň	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
g	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-7		Test Date:	06/24/20	Checked By:	bfs
	Depth :	10-12		Test Id:	560382		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, very d	ark gray gravell	y clay		
	Sample Cor	mment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-7		10-12	43	35	21	14	1.6	Gravelly Lean CLAY (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
)	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-8		Test Date:	06/24/20	Checked By:	bfs
	Depth :	6-8		Test Id:	560380		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, very da	rk gray clay wi	th sand		
	Sample Cor	mment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-8		6-8	58	44	26	18	1.8	Lean CLAY with Sand (CL)


	Client:	AECOM					
	Project:	CHGE NWS	5				
'n	Location:	Poughkeep	osie, NY			Project No:	GTX-311893
g	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-8		Test Date:	06/24/20	Checked By:	bfs
	Depth :	10-12		Test Id:	560379		
	Test Comm	ent:					
	Visual Desc	ription:	Wet, very darl	k gray clay			
	Sample Cor	nment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-8		10-12	62	56	25	31	1.2	Fat CLAY (CH)

	Client:	AECOM					
	Project:	CHGE NWS	5				
g	Location:	Poughkeep	sie, NY			Project No:	GTX-311893
9	Boring ID:			Sample Type:	bag	Tested By:	cam
	Sample ID:	PSB-8		Test Date:	06/24/20	Checked By:	bfs
	Depth :	12-14		Test Id:	560378		
	Test Comm	ent:					
	Visual Desc	ription:	Moist, very d	ark gray clay w	ith sand		
	Sample Cor	nment:					

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	PSB-8		12-14	59	60	28	32	1	Fat CLAY with Sand (CH)

GeoTesti E X P R E S S			CHAIN OF CUSTODY							GeoTesting Express, Inc. 125 Nagog Park Acton, MA 01720 800-434-1062 Toll Free 978-635-0424 Phone 978-635-0266 Fax		
Company Name: AEC	on									Analysis		
Address: 2 Durchess Ave F) ozauk	EEPS	ie "N	1	Sample Type 1. Soil	Container 1. Bucket						
Contact: GEORGE LE	Airy		10 60		2. Geosynthetic	2. Bag 3. Jar						
e-mail: Geocge_LEAF Phone Number: 845 3	14 Q H 77 58	FE LOV 86			3. Rock 4. Concrete	3. Jai 4. Tube						
Fax Number: -	۵۰۰۰				5. Other	5. Roll	10	ATENT AND		5 /		
Project Name: CHGE N	IWS				SEDIMENT		1	ATEN' AND	ATT SECOND	/ .	/	
Project Number: 6054	3645					_ /	al state	w.	Lev /			
Project Location: POUGH		, NY					55/5	Land Contraction of the second	£ /			
Sample	Conta		Samp Date		Sample Type			·/·				Comments
Identification	Size	Type 2	i/z	1300	s s	1×	+	*		Í	Í	
PSB-1 (0-2)												
PSB-1 (Z-4)	1991	2	6/2	1315	5	×	+	×				
PSB-1 (6-8)	lgol	2	6k	1330	5	7	+	+		ļ		
PSB-1 (8-10)	19-1	2	6/2	1400	5	4	+	×		-		
PSB-1 (12-14)	gul	2	6/2	1430	5	¥	+	7			-	
PSB-2 (2-4)	[94]	2	Glz	1230	5	+	7					SANDY - No ATTERBERG
PSB-Z (8-10)	lgal	2	6/3	1315	5	+	7	X				
PSB-2 (12-14)	Igal	2	6/3	1400	5	7	×	×				
PSB-3 (2-4)	1941		-			×	X					SANDY - NO ATTER BERG
elinquished By: J. Chirstenter AEcom Tir					6/12/20 20		dex			Date: Time:		Turn-Around Time Requested:
Relinquished By:				Date: Time:	te: Received By					Date: 6/ Time: (15/27	No. of Business Days:(O
Relinquished By:					te: Received By: Date:				Date:		Special Instructions: Venify Analyses with:	
SHIPPED VIA:												GEORGE. LEAHY @ AECOM. CON

GeoTesti E X P R E S S	ing	3			CHAIN 2	0F Cl 0₽ 3		GeoTesting Express, Inc. 125 Nagog Park Acton, MA 01720 800-434-1062 Toll Free 978-635-0424 Phone 978-635-0266 Fax						
Company Name: AEC	OM									Analysis				
Address:					Sample Type	Containe	Type			/	/			
2 DUTCHESS AVE,	lovgH	ikee	rsie,	N~	1. Soil 1. Bucket									
Contact: GEORGE LEA	fig				2. Geosynthetic 2. Bag									
e-mail: GEORGE. LEAL	4Y @	AECO	sm = C	om										
Phone Number: 845 3	37 58	86			4. Concrete	4. Tube		ON	51					
Fax Number:					5. Other	5. Roll				s/				
Project Name: CHGE	NWS				SEDIMENT		told a contraction of the second	N Ph						
Project Number: 6054	7645					_ /	31	4. /	2/					
Project Location: Pough	IKEEP	SIE ,	NY				Joi /	S/	EV -					
Sample	Conta		Samp		Sample		°/ 0		S/			Comments		
Identification	Size	Туре	Date	Time	Туре	K	/	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Comments		
PSB-3 (6-8)	[qal	Z	6/8	1715	5	X	Ŧ	7						
PSB-4 (4-6)	1941	2	615	900	5	*	7	X						
PSB-4 (10-12)	1981	2	6/5	1015	5	+	X	X						
PSB-4 (12-14)	1941	2	615	1030	5	X	4	X						
PSB-5 (0-2)	1981	2	614	915	5	+	×	x						
PSB-5 (2-4)	1941	2	6/4	930	5	+	+	X						
PSB-5-(8-10)	1901	2	6/4	1500	5	X	X	X						
PSB-5 (10-12)	1941	2	6/4	1515	5	+	×	F						
PSB-7 (2-4)	1991	2	6/9	1415	5	X	X	X						
Relinguished By:				Date:	6/2/2020	Receive				Date:		Turn-Around Time Requested:		
Relinquished By:	AECOV	n		Time:			edex			Time:		10		
Relinquished By:				Date:						Date:	15/20	No. of Business Days:		
				Time:						1:15	Special Instructions:			
Relinquished By:				Date:							Verify Analyses with:			
SHIPPED VIA:				Time:						Linne.				
SHIFFED VIA.												George - Leahy @ AECOM.com		

GeoTesti EXPRESS	J				Sales Order No.:						GeoTesting Express, Inc. 125 Nagog Park Acton, MA 01720 800-434-1062 Toll Free 978-635-0424 Phone 978-635-0266 Fax	
Company Name: AECON Address: 2 Dutchess Are, forg Contact: George Leah e-mail: George Leah Phone Number: Sy 5-33 Fax Number: Project Name: CHGE M Project Number: 605436		Sample Type Container Type 1. Soil 1. Bucket 2. Geosynthetic 2. Bag 3. Rock 3. Jar 4. Concrete 4. Tube 5. Other 5. Roll Settiment 5. Roll										
Project Location: Pought Sample Identification	Conta	iner	Samp Date	Time	Sample Type	<u> </u>	/	/				Comments
PSB-7 (4-6)	1991	2	6/9	1430	5	¥	8	+ ×				
PSB-7 (6-8)	961	2	6[9	1445	5	4	*	~				
PSB-7 (10-12)	1901	2	6/9	1515	5	+	7	*				
PSB-8 (4-6)	1791	2	6/9	1100	5	+	7	×				∞ ;
PSB-8 (6-8)	[201	2	6/9	1130	5	*	x	×				
PSB-8 (10-12)	1981	2	6/9	1200	5	7	×	X				
PSB-8 (j2-14)	1201	2	6/9	1230	5	×	$\boldsymbol{\lambda}$	\times				
Relinquished By: S. Chr-stopWr Relinquished By:	Time: Date:	te: Received By: Date: 6/1					15/20	Turn-Around Time Requested: 20 No. of Business Days:				
Relinquished By:	Time: Date: Time:	e: Received By: Date:				Date:	1215	Special Instructions: Verity Anglyses nith: George. Leghy@AEcom.com				
SHIPPED VIA:												George Leahy @ AECOM. Com

WARRANTY and LIABILITY

GeoTesting Express (GTX) warrants that all tests it performs are run in general accordance with the specified test procedures and accepted industry practice. GTX will correct or repeat any test that does not comply with this warranty. GTX has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

GTX may report engineering parameters that require us to interpret the test data. Such parameters are determined using accepted engineering procedures. However, GTX does not warrant that these parameters accurately reflect the true engineering properties of the *in situ* material. Responsibility for interpretation and use of the test data and these parameters for engineering and/or construction purposes rests solely with the user and not with GTX or any of its employees.

GTX's liability will be limited to correcting or repeating a test which fails our warranty. GTX's liability for damages to the Purchaser of testing services for any cause whatsoever shall be limited to the amount GTX received for the testing services. GTX will not be liable for any damages, or for any lost benefits or other consequential damages resulting from the use of these test results, even if GTX has been advised of the possibility of such damages. GTX will not be responsible for any liability of the Purchaser to any third party.

Commonly Used Symbols

	-	-	
А	pore pressure parameter for $\Delta \sigma_1 - \Delta \sigma_3$	Sr	Post cyclic undrained shear strength
В	pore pressure parameter for $\Delta \sigma_3$	Т	temperature
CAI	CERCHAR Abrasiveness Index	t	time
CIU	isotropically consolidated undrained triaxial shear test	U, UC	unconfined compression test
CR	compression ratio for one dimensional consolidation	UU, Q	unconsolidated undrained triaxial test
CSR	cyclic stress ratio	u _a	pore gas pressure
Cc	coefficient of curvature, $(D_{30})^2 / (D_{10} \times D_{60})$	ue	excess pore water pressure
Cu	coefficient of uniformity, D_{60}/D_{10}	u, u _w	pore water pressure
Cc	compression index for one dimensional consolidation	V	total volume
Cα	coefficient of secondary compression	, Vg	volume of gas
C _v	coefficient of consolidation	V _s	volume of solids
с	cohesion intercept for total stresses	V _s	shear wave velocity
c'	cohesion intercept for effective stresses	V _v	volume of voids
D	diameter of specimen	V _w	volume of water
D	damping ratio	V _o	initial volume
D_{10}	diameter at which 10% of soil is finer	vo	velocity
D15	diameter at which 15% of soil is finer	Ŵ	total weight
D ₃₀	diameter at which 30% of soil is finer	W s	weight of solids
D ₅₀	diameter at which 50% of soil is finer	W s Ww	weight of water
D 60	diameter at which 60% of soil is finer	w	water content
D 85	diameter at which 85% of soil is finer	w Wc	water content at consolidation
d 50	displacement for 50% consolidation	Wf	final water content
d 90	displacement for 90% consolidation	WI WI	liquid limit
d ₁₀₀	displacement for 100% consolidation	w _n	natural water content
E	Young's modulus	w n W p	plastic limit
e	void ratio	w p Ws	shrinkage limit
ec	void ratio after consolidation	ws Wo, Wi	initial water content
eo	initial void ratio	α	slope of qf versus pf
G	shear modulus	α'	slope of qf versus pf
Gs	specific gravity of soil particles	γt	total unit weight
Н	height of specimen	γt Yd	dry unit weight
H_R	Rebound Hardness number	γa γs	unit weight of solids
i	gradient	γs γw	unit weight of water
Is	Uncorrected point load strength	rw E	strain
I _{S(50)}	Size corrected point load strength index	Evol	volume strain
HA	Modified Taber Abrasion	ενοί Eh, Ev	horizontal strain, vertical strain
H_{T}	Total hardness	μ	Poisson's ratio, also viscosity
Ko	lateral stress ratio for one dimensional strain	σ	normal stress
k	permeability	σ'	effective normal stress
LI	Liquidity Index	σ _c , σ' _c	consolidation stress in isotropic stress system
mv	coefficient of volume change	$\sigma_{\rm c}, \sigma_{\rm c}$ $\sigma_{\rm h}, \sigma_{\rm h}$	horizontal normal stress
n	porosity	$\sigma_{\rm v}, \sigma'_{\rm v}$	vertical normal stress
PI	plasticity index	σ'_{vc}	Effective vertical consolidation stress
Pc	preconsolidation pressure	σ_1	major principal stress
р	$(\sigma_1 + \sigma_3)/2$, $(\sigma_v + \sigma_h)/2$		intermediate principal stress
p'	$(\sigma'_{1} + \sigma'_{3})/2, (\sigma'_{v} + \sigma'_{h})/2$	σ ₂ σ ₃	minor principal stress
p'c	p' at consolidation	τ	shear stress
Q	quantity of flow		friction angle based on total stresses
q	$(\sigma_1, \sigma_3)/2$	φ φ'	friction angle based on effective stresses
q qf	q at failure		residual friction angle
q _o , q _i	initial q	φ'r	ϕ for ultimate strength
90, 91 Qc	q at consolidation	φult	φ for anumate suchgui
-10	1		

Appendix C Treatability Study Results

Waste Stream Technology, Inc. 2701 Lockport Road Niagara Falls, NY 14305 Phone (716) 282-2469 Fax (716) 282-2481

Waste Stream Technology Central Hudson Gas & Electric Treatability Study Report

1.0 Scope of Work

The goal of this treatability study is to determine the efficacy of dewatering technologies in samples obtained in the Geotechnical Investigation task from Central Hudson Gas & Electric (CHGE, Poughkeepsie, NY). Specifically, samples will be tested utilizing high pressure Plate Frame Filter Press technology, Gravity Drainage Geo-tubes, and reagent-mediated solidification. Reagents tested included Type I Portland Cement and Super-absorbent Polymer (SAP, supplied by BASF).

All research was conducted at the Waste Stream Technology (a wholly-owned subsidiary of Sevenson Environmental Services) Treatability Laboratory in Niagara Falls, NY(EPA ID NYR000185033).

2.0 Treatability Study

2.1 "As Received" Sample Testing

Four buckets of sediment and four buckets of river water were received at the treatability laboratory on June 9th, 2020. Upon receipt, the sediment samples were logged, weighed, mixed to apparent homogeneity, and subsampled for initial characterization. Sediment was analyzed for percent solids, specific gravity, percent oil, pH, paint filter test, and particle size analysis >75 micrometers (#200 sieve). The methods employed in the characterization of the "as received material" are listed in Table 1.

River water samples were used as diluent in filter press and geobag experiments.

Table 1.CHGE Treatability StudyMethods for "As Received" Sediment Testing

Analysis	Method
Percent Solids	Standard Method 2540G
Specific Gravity	Standard Method 2710F
Percentage Oil	Bariod Retort Test Kit
Paint Filter	EPA SW 846 Method 9095
pH	EPA SW 846 Method 9045C
Particle Size >75 µm	Modified ASTM D-422

The results of "as received" testing are summarized in Table 2, and show that the B-9 samples were greyish, thick and clay-like, whereas the B-6 samples were dark, thinner, and oily. B-9 Samples had 54.36-67.92 percent solids, 6.66-6.73 pH, specific gravity between 1.51-1.65, and 25.33-22.4% retained on a #200 sieve. Retort was not performed because there was no noticeable oil. B-6 Samples had 50.15-64.3 percent solids, 6.26-6.55 pH, specific gravity between 1.31-1.57, and 48.54-48.76% retained on a #200 sieve. Retort measured the oil in both samples at 2%.

	CHGE Treatability Study										
	Results for "As Received" Sediment Testing										

Table 2.

Sample	% Solids	рН	Specific Gravity	% Retained on Sieve (200#)	% Oil	Description
B-9A	67.92	6.73	1.65	22.4		Greyish sample, viscous, clay-
B-9B	54.39	6.66	1.51	25.33		like, some wood
B-6A	50.15	6.26	1.31	48.76	2%	Black and very oily sample,
B-6B	64.3	6.55	1.57	48.54	2%	more pourable than Sample B-9

"As received" samples were then de-sanded by wet sieving sample through a #200 sieve and washing through material with tap water. Sample that passed through the sieve was collected and analyzed for solids concentration. Sieved sample was then diluted to 5-10% solids with site water and used for polymer screening, plate frame filter press experiments, and geotube testing.

2.2 Polymer Screening

Sediment samples were diluted to 5-10% solids with site water, and 100 ml aliquots were added to 250 ml tri-pour beakers and used for study. Polymer was then added incrementally to sediment, and samples were mixed thoroughly by pouring between two beakers after addition of each dose. While mixing, sediment was carefully evaluated for any coagulation formation or generation of sediment flocculent. Appropriate polymer and dose for both dewatering modalities was selected based on observations made during this screening process. For example, small pin flocs are good for filter pressing, whereas larger, coagulants and aggregates are appropriate for gravity drainage.

Due to the oily nature of the B6 samples, this sediment had to be pre-conditioned with a solution of 50% ferric sulfate and 25% sodium hydroxide before treated with polymer.

Polymers tested included Dixie Polymers 757, 824/848, 843, 850, and 853, Hex Flocc Polymers SB-101, 320L, and 139H, and Hexagon Polymer 798x. Based on the results of this testing, 200-500 ppm Dixie Polymer Dixie Polymer 757 and 626 were selected for the plate frame filter press experiments, and 250 ppm Hexagon Polymer 798x was selected for gravity drainage/geobag filtration.

2.3 Plate Frame Filter Press

The equipment utilized for this study was a JWI bench scale filter press unit with custom mixer assembly and Crosible 85x/5 filter cloth (4-6CFM). A 1L aliquot of polymer treated feed slurry was placed into the feed vessel, which was then sealed and the mixing unit energized. The test cycle began when compressed nitrogen gas was initially applied to the sealed feed vessel. Pressure was increased from 0 psi at the start of the test cycle up to the target pressure of either 125 or 150 psi over a period of 3 minutes. Filtrate collected prior to reaching target pressure was discarded from analysis. The test cycle is complete after the allotted time (between 45 and 75 minutes) had elapsed from initial pressurization. At this time, pressure was relieved from the system, the unit is disassembled, observations made, and samples collected for analyses.

Data recorded includes Feed Solids and Volume, Polymer and Dosage, Filter Press Pressure and Press Time, Filtrate Quality and Volume, Filter Cloth Quality, and Filter Cake Quality, Specific Gravity, and Percent Solids.

Results of the plate frame filter press studies are summarized in Table 3 (Sample B-9) and Table 4 (B-6).

For sample B-9, 200 ppm of either polymer 757 or 626, followed by pressing for 1 hour at 150 psi, yielded an excellent cake with a solids concentration > 72% and an SG of \sim 1.8, with a good release from the cloth. The associated filtrate were clear after a slight initial discharge (typical and unremarkable).

For sample B-6, conditioning with ferric sulfate and sodium hydroxide, followed sequentially by treatment with 500 ppm polymer 626 and by filter pressing for 1 hour at 125 psi, yielded and excellent cake that released well from the cloth with 74.78 solids and and SG of 1.55. Resultant filtrate was clear, with a pH of 6.43. Polymer 757 yielded a similar cake, but filtrate had a yellow discoloring.

Photos of sample B-6 filter pressing are shown below.

Sample B-6, 500 ppm polymer 626, 1 hour @ 125psi Filter Cake and filter cloth (above) and filtrate (left).

Table 3.	
CHGE Treatability Study	
Sample B-9 Results for Plate Frame Filter Press	

Sample	%Feed (Sieved)	Feed Vol	Polymer & Dose	Time / Presure	Filtrate Vol	Filtrate Comments	Cloth Comments	Cake Comments	%sol	Cake SG
B-9	~10	1 L	untreated	1 hr/ 150 psi	225 mL	slight ISD, then clear, yellowish tinge		incomplete, good cake, missing top portion - solids based on partial	70.91	1.74
B-9	~10	1 L	200 ppm 757	1 hr/ 125 psi	320			slightly soft top, good cake	69.68	1.66
B-9	~10	1 L	200 ppm 757	1 hr/ 150 psi	360 mL	slight ISD, then clear	good release	excellent cake, slightly soft top	72.85	1.81
B-9	~10	1 L	400 ppm 757	1 hr/ 150 psi	380 mL	very slight ISD, then clear	ht ISD, then clear good release		72.21	1.73
B-9	~10	1 L	200 ppm 626	45 minutes/ 125 psi	360	slight ISD, then clear	good release	soft top, good cake	71.9	1.79
B-9	~10	1 L	200 ppm 626	1 hr/ 125 psi	340	slight ISD, then clear	good release	slightly soft top, good cake	69.69	1.79
B-9	~10	1 L	200 ppm 626	75 minutes/1 25 psi	450	ISD then clear	good release	excellent cake	75.05	1.78
B-9	~10	1 L	200 ppm 626	1 hr/ 150 psi	340 mL	slight ISD, then clear	good release	excellent cake, slightly soft top	74.12	1.82
B-9	~10	1 L	400 ppm 626	1 hr/ 150 psi	400 mL	very slight ISD, then clear	good release	excellent cake	72.29	1.77

Table 4. CHGE Treatability Study Sample B-6 Results for Plate Frame Filter Press

Sample	%Feed (Sieved)	Feed Vol	Polymer & Dose	Time / Presure	Filtrate Vol	Filtrate Comments	Cloth Comments	Cake Comments	%sol	Cake SG	Filtrate pH
B-6	~7	1 L	500 ppm 626 plus ferric and NaOH	1 hr/ 125 psi	585	clear	good release	excellent cake	74.78	1.55	6.43
B-6	~7	1 L	500 ppm 626 plus ferric	1 hr/ 125 psi	700	ISD then clear	stain, possible blind, good release	good cake	68.36	1.69	before pressing: 5.70 after pressing: 6.10
B-6	~7	1 L	500 ppm 626 plus NaOH	1 hr/ 125 psi	800	ISD then clear	stain, possible blind, good release	soft cake	67.59	1.53	before pressing 9.33 after pressing: 8.85
B-6	~7	1 L	500 ppm 626 plus ferric and NaOH	1 hr/ 125 psi	775	ISD then clear	re-used cloth from FP 10	excellent cake	66.68	1.72	7.24
B-6	~7	1 L	500 ppm 757 plus ferric and NaOH	1 hr/ 125 psi	480	yellowish tinge ISD	stain, possible blind, good release	excellent cake	70.15	1.48	6.46

2.4 Rapid Drainage Test (RDT) and Geotube Filtration

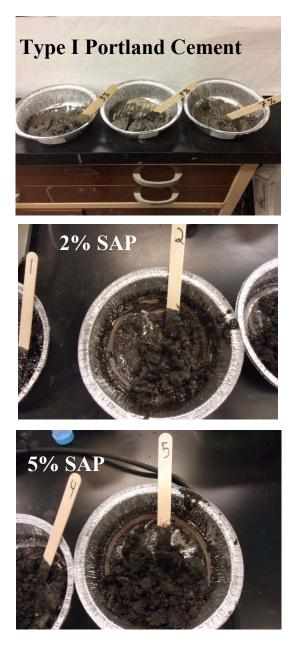
RDT. Based on discussion with the client during a site visit, only Sample B-6, which presented the worst-case scenario, was investigated. Sediment was diluted to 10% solids with site water and treated with 250 ppm of Hexagon 798x polymer, poured into a cone funnel and allowed to drain. A volume of 190 mL of filtrate was collected within the first minute, and 200 mL of filtrate after 5 minutes. Cake solids concentrations were taken at 5 minutes and 24 hours, and was determined to be 24.16% and 21.79%, respectively.

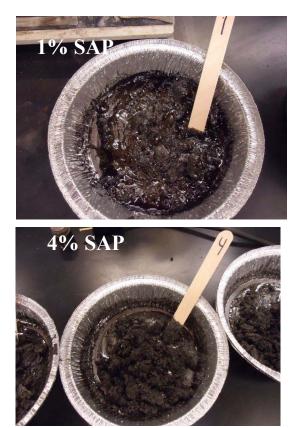
Photos below illustrate this RDT test.

Sample B-6 Rapid Drainage Test filtrate (left) and filter cake (above).

Geotube Filtration. Again, based on discussion with the client, only Sample B-6 was tested. Sediment was diluted to 10% solids with site water and treated with 250 ppm of Hexagon 798x polymer, poured into an inverted slump cone funnel and allowed to drain. Cake solids concentrations were taken at 24 hours, 3 days, and 7 days, and was determined to be 50.89%, 54.68% and 58.36%, respectively. All samples passed paint filter test.

Photos below illustrate the geotube filtration test.




Sample B-6 Geotube Filtration test set-up (left) and 7 day solids (right).

2.5 Solidification

As in the geobag tests, in order to investigate worst-case material, only Sample B-6A was tested for solidification. Using commercially available reagents, 200 gram aliquots of "as received" sample B6A were treated with either 3% (w/w), 5%, or 7% Type I Portland Cement, or 1% (w/w), 2%, 4% or 5% super-absorbent polymer (SAP). Samples were allowed to cure for 24 hours and analyzed for paint filter test and percent solids (Portland Cement only). All Portland-cement amended samples passed paint filter test after 24 hours, and solids were measured to be between 51-57%. A minimum treatment of 2% super absorbent polymer was required to remediate the B6A sediment so that endproduct passed paint filter test.

Photos below illustrate the solidification tests.

2.6 Filtrate Analytical Testing

Filtrate from the B-6 plate frame filter press and geotube filtration experiments were collected and analyzed by Euorphins TestAmerica (Amherst, NY) for the parameters outlined in Table 5.

PARAMETER	METHOD
VOCs	624
SVOCs	625
pH	9040
TSS, TDS	SM2540
PCBs	608
Oil and Grease	1664
Total Metals (As, Cr, Fe, Pb)	200.7
Dissolved Metals (As, Cr, Fe, Pb)	200.7
Low Level Mercury	1631
Ferrous Iron	SM 3500-Fe
BOD5	SM5210B
CBOD5	SM5210B
COD	410.4
Total Cyanide	335.4
Hexavalent Chromium	218.6
Fluoride	300
Total Phenols	420.4
TCLP VOCs	1311/8260
TCLP SVOCs	1311/8270
TCLP Metals (RCRA 8)	1311/6010
TOC	SM5310

Table 5.CHGE Treatability StudyB-6 Filter Press and B-6 Geobag Filtrate Analyses and Methods

The detected analytes are listed in Table 6 (Filter Press) and Table 7 (Geobag), and the complete analytical report is presented in Appendix A.

Analyte	Result	Units	Method
Benzene	73	μg/L	624.1
Ethylbenzene	130	μg/L	624.1
Benzene	50	μg/L	8260C
Acenaphthene	12	μg/L	625.1
Bis(2-ethylhexyl) phthalate	33	μg/L	625.1
Fluorene	11	μg/L	625.1
2-Methylphenol	2.6	μg/L	8270D
Mercury	3.8	ng/L	1631E
Chromium	0.0022	mg/L	200.7 Rev 4.4
Iron	1.3	mg/L	200.7 Rev 4.4
Lead	0.0047	mg/L	200.7 Rev 4.4
Barium	0.034	mg/L	6010C
Chromium	0.0021	mg/L	6010C
Lead	0.0040	mg/L	6010C
Oil & Grease	2.9	mg/L	1664B
Fluoride	0.17	mg/L	300.0
Chemical Oxygen Demand	858	mg/L	410.4
Phenolics, Total Recoverable	0.040	mg/L	420.4
Total Dissolved Solids	387	mg/L	SM 2540C
Total Suspended Solids	16.4	mg/L	SM 2540D
pH	7.5	SU	SM 4500 H+ B
Biochemical Oxygen Demand	99.6	mg/L	SM 5210B
Carbonaceous Biochemical Oxygen Demand	98.8	mg/L	SM 5210B
Total Organic Carbon	183	mg/L	SM 5310C

Table 6.CHGE Treatability StudyAnalytes Detected in B-6 Filter Press Filtrate Analyses

Analyte	Result	Units	Method
Benzene	69	μg/L	624.1
Ethylbenzene	330	µg/L	624.1
Toluene	13	μg/L	624.1
Benzene	60	μg/L	8260C
Acenaphthene	250	μg/L	625.1
Anthracene	84	μg/L	625.1
Benzo[a]anthracene	47	μg/L	625.1
Benzo[a]pyrene	51	μg/L	625.1
Benzo[b]fluoranthene	26	μg/L	625.1
Chrysene	41	μg/L	625.1
Fluoranthene	83	μg/L	625.1
Fluorene	99	μg/L	625.1
Naphthalene	820	μg/L	625.1
Phenanthrene	320	μg/L	625.1
Pyrene	160	μg/L	625.1
2-Methylphenol	0.82	μg/L	8270D
3-Methylphenol	6.2	μg/L	8270D
4-Methylphenol	6.2	μg/L	8270D
Mercury	35.1	ng/L	1631E
Arsenic	0.0091	mg/L	200.7 Rev 4.4
Iron	3.6	mg/L	200.7 Rev 4.4
Arsenic	0.0076	mg/L	6010C
Barium	0.048	mg/L	6010C
Oil & Grease	5.3	mg/L	1664B
Fluoride	0.099	mg/L	300.0
Chemical Oxygen Demand	57.8	mg/L	410.4
Phenolics, Total Recoverable	0.044	mg/L	420.4
Total Dissolved Solids	194	mg/L	SM 2540C
Total Suspended Solids	10.8	mg/L	SM 2540D
рН	7.4	SU	SM 4500 H+ B
Biochemical Oxygen Demand	11.9	mg/L	SM 5210B
Carbonaceous Biochemical Oxygen Demand	16.5	mg/L	SM 5210B
Total Organic Carbon	14.5	mg/L	SM 5310C

Table 7. CHGE Treatability Study Analytes Detected in B-6 Geobag Filtrate Analyses

3.0 Conclusions

The results of this treatability study show that under optimal conditions, recessed chamber filter yielded a cake solids of 66% or greater. Due to it's oily nature, B-6 feed solids required preconditioning with 0.36 ml/L of 50% ferric sulfate and 0.8 ml/L of 25% sodium hydroxide. Sediment was then treated with 500 ppm polymer 626, followed by filter pressing for 1 hour at 125 psi. Filter cake yields were between 66-75% and had excellent handling properties. Resultant filtrates were clear.

Treatment of sample B-9 with 200 ppm polymer 757 or 626, followed by pressing for 1 hour at 125 psi also yielded a filter cake with \sim 70% solids and excellent handling properties. Resultant filtrates were clear.

Geotube results show that sediment treated with 250 ppm of Hexagon 798x polymer will yield approximately 54% solids content after 3 days that may require some Portland Cement amendments for stabilization and landfill workability. Pilot tests will prove this out.

Analytical testing of the filter press filtrate and the geobag filtrate showed that both samples had neutral pHs and very low suspended solids. Both samples also had some metals and organics present, indicating secondary water treatment may be required for any process filtrate generated.

As received B-6 sediment required 3% Type I Portland Cement, or 2-4% SAP to remove free liquids so that the remedial endproduct passed the paint filter test.

Appendix A

Central Hudson Gas & Electric Treatability Study Analytical Results for Geobag and Filter Press Filtrate

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-171773-1

Client Project/Site: Sevenson Environmental Services, Inc.

For:

Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, New York 14305

Attn: James Hyzy

Authorized for release by: 7/7/2020 12:39:06 PM Alexander Gilbert, Project Management Assistant I alexander.gilbert@testamericainc.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835 brian.fischer@testamericainc.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	9
Surrogate Summary	19
QC Sample Results	21
QC Association Summary	39
Lab Chronicle	45
Certification Summary	47
Method Summary	48
Sample Summary	49
Chain of Custody	50
Receipt Checklists	54

Definitions/Glossary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

2

Qualifiers

		— <u>ა</u>
GC/MS VOA Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
GC/MS Semi	VOA	5
Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	6
*1	LCS/LCSD RPD exceeds control limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Х	Surrogate recovery exceeds control limits	
GC Semi VO	Α	8
Qualifier	Qualifier Description	
Х	Surrogate recovery exceeds control limits	9
Metals Qualifier	Qualifier Description	10
	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
General Che	mistry	
Qualifier	Qualifier Description	
b	Result Detected in the Unseeded Control blank (USB).	_
F3	Duplicate RPD exceeds the control limit	13
Н	Sample was prepped or analyzed beyond the specified holding time	
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		[—] 15
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
	Listed under the UDU setures to design at a that the result is repeated as a desurgisht hasis	

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control

Definitions/Glossary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

3

Glossary (Continued)

Ciccoury	(continuou)
Abbreviation	These commonly used abbreviations may or may not be present in this report.
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 480-171773-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-171773-1

Comments

No additional comments.

Receipt

The samples were received on 6/26/2020 3:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 4.7° C and 5.6° C.

GC/MS VOA

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: GEOBAG FILTRATE (480-171773-1). Elevated reporting limits (RLs) are provided.

Method 624.1: The following sample was diluted due to the abundance of non-target analytes: FILTER PRESS FILTRATE (480-171773-2). Elevated reporting limits (RLs) are provided.

Method 8260C: The following samples were diluted due to the abundance of non-target analytes: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-538566 recovered above the upper control limit for Carbon tetrachloride. The samples associated with this CCV were non-detect for the affected analyte; therefore, the data have been reported. The associated samples are impacted: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2).

Method 8260C: The following samples were collected in unpreserved vials; however, the test assigned was a preserved test. The samples were analyzed within the 7-day holding time specified for unpreserved samples: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2)..

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 625.1: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 480-538584 and analytical batch 480-538685 recovered outside control limits for the following analytes: Benzidine.

Method 625.1: The following samples were diluted due to the nature of the sample matrix: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2). Elevated reporting limits (RLs) are provided.

Method 625.1: The following sample required a dilution due to the nature of the sample matrix: GEOBAG FILTRATE (480-171773-1). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following samples contained an allowable number of surrogate compounds outside limits: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2). These results have been reported and qualified.

Method 8270D: The laboratory control sample (LCS) for preparation batch 480-538762 and analytical batch 480-538875 recovered outside control limits for the following surrogate: 2,4,6-Tribromophenol. This surrogate is biased high and no detections were found for associated analytes in the following affected samples: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2). Therefore, the data has been reported.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-538875 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Job ID: 480-171773-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

Method 8270D: The laboratory control sample (LCS) for preparation batch 480-538762 and analytical batch 480-538875 recovered outside control limits for the following analytes: 2,4,5-Trichlorophenol and 2,4,6-Trichlorophenol. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted due to the nature of the sample matrix: FILTER PRESS FILTRATE (480-171773-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 608.3: Surrogate recovery for the following samples were outside control limits: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6010C: The interference check standard solution (ICSA) associated with the following samples showed results for Barium at a level greater than 2 times the limit of detection (LOD). It is believed that the solution contains trace impurities of this element and the results are not due to matrix interference. These results are consistent with those found by the manufacturer of the ICSA solution. GEOBAG FILTRATE (480-171773-1), FILTER PRESS FILTRATE (480-171773-2), (LCS 480-539037/2-A) and (MB 480-539037/1-A)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method SM 3500 CR D: The following samples were analyzed outside of analytical holding time due to laboratory oversight: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2).

Method SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2).

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2).

Method 410.4: The method blank for analytical batch 480-538991 contained analyte above the reporting limit (RL). Associated sample(s) were not re-extracted and/or re-analyzed because results were greater than 10X the value found in the method blank.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE

Job ID: 480-171773-1 Lab Sample ID: 480-171773-1 Dil Fac D Method Prep Type 10 624.1 Total/NA 20 625.1 Total/N			
Dil Fac	D Method	Prep Type	
10	624.1	Total/NA	
10	624.1	Total/NA	
10	624.1	Total/NA	5
4	8260C	Total/NA	
20	625.1	Total/NA	8
20	625.1	Total/NA	
20	625.1	Total/NA	0
20	625.1	Total/NA	9
20	625.1	Total/NA	
20	625.1	Total/NA	
20	625.1	Total/NA	
1	8270D	Total/NA	
1	8270D	Total/NA	
1	8270D	Total/NA	
2	1631E	Total/NA	
1	200.7 Rev 4.4	Total/NA	13
1	200.7 Rev 4.4	Total/NA	
1	6010C	Total/NA	
1	6010C	Total/NA	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	69		50	6.0	ug/L	10	_	624.1	Total/NA
Ethylbenzene	330		50	4.6	ug/L	10		624.1	Total/NA
Toluene	13	J	50	4.5	ug/L	10		624.1	Total/NA
Benzene	60		4.0	1.6	ug/L	4		8260C	Total/NA
Acenaphthene	250		100	16	ug/L	20		625.1	Total/NA
Anthracene	84	J	100	28	ug/L	20		625.1	Total/NA
Benzo[a]anthracene	47	J	100	22	ug/L	20		625.1	Total/NA
Benzo[a]pyrene	51	J	100	26	ug/L	20		625.1	Total/NA
Benzo[b]fluoranthene	26	J	100	24	ug/L	20		625.1	Total/NA
Chrysene	41	J	100	20	ug/L	20		625.1	Total/NA
Fluoranthene	83	J	100	32	ug/L	20		625.1	Total/NA
Fluorene	99	J	100	20	ug/L	20		625.1	Total/NA
Naphthalene	820		100	17	ug/L	20		625.1	Total/NA
Phenanthrene	320		100	24	ug/L	20		625.1	Total/NA
Pyrene	160		100	28	ug/L	20		625.1	Total/NA
2-Methylphenol	0.82	J	5.0	0.40	ug/L	1		8270D	Total/NA
3-Methylphenol	6.2	J	10	0.40	ug/L	1		8270D	Total/NA
4-Methylphenol	6.2	J	10	0.36	ug/L	1		8270D	Total/NA
Mercury	35.1		1.0	0.28	ng/L	2		1631E	Total/NA
Arsenic	0.0091	J	0.015	0.0056	mg/L	1		200.7 Rev 4.4	Total/NA
Iron	3.6		0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA
Arsenic	0.0076	J	0.015	0.0056	mg/L	1		6010C	Total/NA
Barium	0.048	٨	0.0020	0.00070	mg/L	1		6010C	Total/NA
Oil & Grease	5.3		4.7	1.3	mg/L	1		1664B	Total/NA
Fluoride	0.099		0.050	0.026	mg/L	1		300.0	Total/NA
Chemical Oxygen Demand	57.8		10.0	5.0	mg/L	1		410.4	Total/NA
Phenolics, Total Recoverable	0.044		0.010	0.0035	mg/L	1		420.4	Total/NA
Total Dissolved Solids	194		10.0	4.0	mg/L	1		SM 2540C	Total/NA
Total Suspended Solids	10.8		4.0	4.0	mg/L	1		SM 2540D	Total/NA
pH	7.4	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Temperature	19.1	HF	0.001	0.001	Degrees C	1		SM 4500 H+ B	Total/NA
Biochemical Oxygen Demand	11.9	b	6.0	6.0	mg/L	1		SM 5210B	Total/NA
Carbonaceous Biochemical Oxygen Demand	16.5	b	6.0	6.0	mg/L	1		SM 5210B	Total/NA
Total Organic Carbon	14.5		1.0	0.43	mg/L	1		SM 5310C	Total/NA

Client Sample ID: FILTER PRESS FILTRATE

Lab Sample ID: 480-171773-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	73		50	6.0	ug/L	10	_	624.1	Total/NA
Ethylbenzene	130		50	4.6	ug/L	10		624.1	Total/NA
Benzene	50		5.0	2.1	ug/L	5		8260C	Total/NA
Acenaphthene	12	J	50	8.1	ug/L	10		625.1	Total/NA
Bis(2-ethylhexyl) phthalate	33	J	100	12	ug/L	10		625.1	Total/NA
Fluorene	11	J	50	10	ug/L	10		625.1	Total/NA
2-Methylphenol	2.6	J	5.0	0.40	ug/L	1		8270D	Total/NA
Mercury	3.8		0.50	0.14	ng/L	1		1631E	Total/NA
Chromium	0.0022	J	0.0040	0.0010	mg/L	1		200.7 Rev 4.4	Total/NA
Iron	1.3		0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA
Lead	0.0047	J	0.010	0.0030	mg/L	1		200.7 Rev 4.4	Total/NA
Barium	0.034	۸	0.0020	0.00070	mg/L	1		6010C	Total/NA
Chromium	0.0021	J	0.0040	0.0010	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Detection Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: FILTER PRESS FILTRATE (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Lead	0.0040	J	0.010	0.0030	mg/L	1	6010C	Total/NA
Oil & Grease	2.9	J	4.8	1.3	mg/L	1	1664B	Total/NA
Fluoride	0.17		0.10	0.052	mg/L	2	300.0	Total/NA
Chemical Oxygen Demand	858		100	50.0	mg/L	10	410.4	Total/NA
Phenolics, Total Recoverable	0.040		0.010	0.0035	mg/L	1	420.4	Total/NA
Total Dissolved Solids	387		10.0	4.0	mg/L	1	SM 2540C	Total/NA
Total Suspended Solids	16.4		4.0	4.0	mg/L	1	SM 2540D	Total/NA
рН	7.5	HF	0.1	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	19.3	HF	0.001	0.001	Degrees C	1	SM 4500 H+ B	Total/NA
Biochemical Oxygen Demand	99.6	b	60.0	60.0	mg/L	1	SM 5210B	Total/NA
Carbonaceous Biochemical Oxygen	98.8	b	24.0	24.0	mg/L	1	SM 5210B	Total/NA
Demand Total Organic Carbon	183		4.0	1.7	ma/L	4	SM 5310C	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 480-171773-2

Job ID: 480-171773-1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

_ Method: 624.1 - Volatile Or	ganic Compou	inds (GC/N	IS)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		50	3.9	ug/L			06/27/20 20:32	10
1,1,2,2-Tetrachloroethane	ND		50	2.6	ug/L			06/27/20 20:32	10
1,1,2-Trichloroethane	ND		50	4.8	ug/L			06/27/20 20:32	10
1,1-Dichloroethane	ND		50	5.9	ug/L			06/27/20 20:32	10
1,1-Dichloroethene	ND		50	8.5	ug/L			06/27/20 20:32	10
1,2-Dichlorobenzene	ND		50	4.4	ug/L			06/27/20 20:32	10
1,2-Dichloroethane	ND		50	6.0	ug/L			06/27/20 20:32	10
1,2-Dichloroethene, Total	ND		100	32	ug/L			06/27/20 20:32	10
1,2-Dichloropropane	ND		50	6.1	ug/L			06/27/20 20:32	10
1,3-Dichlorobenzene	ND		50	5.4	ug/L			06/27/20 20:32	10
1,4-Dichlorobenzene	ND		50	5.1	ug/L			06/27/20 20:32	10
2-Chloroethyl vinyl ether	ND		250	19	ug/L			06/27/20 20:32	10
Acrolein	ND		1000	170	ug/L			06/27/20 20:32	10
Acrylonitrile	ND		500	19	ug/L			06/27/20 20:32	10
Benzene	69		50	6.0	ug/L			06/27/20 20:32	10
Bromoform	ND		50	4.7	ug/L			06/27/20 20:32	10
Bromomethane	ND		50	12	ug/L			06/27/20 20:32	10
Carbon tetrachloride	ND		50	5.1	ug/L			06/27/20 20:32	10
Chlorobenzene	ND		50	4.8	ug/L			06/27/20 20:32	10
Chlorodibromomethane	ND		50	4.1	ug/L			06/27/20 20:32	10
Chloroethane	ND		50	8.7	ug/L			06/27/20 20:32	10
Chloroform	ND		50	5.4	ug/L			06/27/20 20:32	10
Chloromethane	ND		50	6.4	ug/L			06/27/20 20:32	10
cis-1,3-Dichloropropene	ND		50	3.3	ug/L			06/27/20 20:32	10
Dichlorobromomethane	ND		50	5.4	ug/L			06/27/20 20:32	10
Ethylbenzene	330		50		ug/L			06/27/20 20:32	10
Methylene Chloride	ND		50	8.1	ug/L			06/27/20 20:32	10
Tetrachloroethene	ND		50	3.4	ug/L			06/27/20 20:32	10
Toluene	13	J	50	4.5	ug/L			06/27/20 20:32	10
trans-1,2-Dichloroethene	ND		50	5.9	ug/L			06/27/20 20:32	10
trans-1,3-Dichloropropene	ND		50	4.4	ug/L			06/27/20 20:32	10
Trichloroethene	ND		50		ug/L			06/27/20 20:32	10
Vinyl chloride	ND		50	7.5	ug/L			06/27/20 20:32	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		68 - 130			-		06/27/20 20:32	10
4-Bromofluorobenzene (Surr)	101		76 - 123					06/27/20 20:32	10
Dibromofluoromethane (Surr)	103		75 - 123					06/27/20 20:32	10
Toluene-d8 (Surr)	101		77 - 120					06/27/20 20:32	10

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		4.0	0.84	ug/L			06/29/20 22:11	4
2-Butanone (MEK)	ND		40	5.3	ug/L			06/29/20 22:11	4
Benzene	60		4.0	1.6	ug/L			06/29/20 22:11	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			06/29/20 22:11	4
Chlorobenzene	ND		4.0	3.0	ug/L			06/29/20 22:11	4
Chloroform	ND		4.0	1.4	ug/L			06/29/20 22:11	4
Tetrachloroethene	ND		4.0	1.4	ug/L			06/29/20 22:11	4
Trichloroethene	ND		4.0	1.8	ug/L			06/29/20 22:11	4

Eurofins TestAmerica, Buffalo

Job ID: 480-171773-1

Lab Sample ID: 480-171773-1 Matrix: Water

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

108

Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND	4.0	3.6 ug/L			06/29/20 22:11	4
1,1-Dichloroethene	ND	4.0	1.2 ug/L			06/29/20 22:11	4
Surrogate	%Recovery Qua	alifier Limits			Prepared	Analyzed	Dil Fac
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery Qua	alifierLimits77 - 120			Prepared	Analyzed 06/29/20 22:11	Dil Fac
U					Prepared		Dil Fac 4 4

75 - 123

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Method: 625.1 - Semivolati Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	200	16	ug/L		06/29/20 16:29	06/30/20 13:15	20
1,2-Dichlorobenzene	ND	200	100	ug/L		06/29/20 16:29	06/30/20 13:15	20
1,2-Diphenylhydrazine	ND	200	16	ug/L		06/29/20 16:29	06/30/20 13:15	20
1,3-Dichlorobenzene	ND	200	14	ug/L		06/29/20 16:29	06/30/20 13:15	20
1,4-Dichlorobenzene	ND	200	110	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,2'-oxybis[1-chloropropane]	ND	100	17	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,4,6-Trichlorophenol	ND	100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,4-Dichlorophenol	ND	100	15	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,4-Dimethylphenol	ND	100	28	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,4-Dinitrophenol	ND	200	100	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,4-Dinitrotoluene	ND	200	100	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,6-Dinitrotoluene	ND	100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
2-Chloronaphthalene	ND	100	18	ug/L		06/29/20 16:29	06/30/20 13:15	20
2-Chlorophenol	ND	100	13	ug/L		06/29/20 16:29	06/30/20 13:15	20
2-Nitrophenol	ND	100	14	ug/L		06/29/20 16:29	06/30/20 13:15	20
3,3'-Dichlorobenzidine	ND	100	16	ug/L		06/29/20 16:29	06/30/20 13:15	20
4,6-Dinitro-2-methylphenol	ND	200	13	ug/L		06/29/20 16:29	06/30/20 13:15	20
4-Bromophenyl phenyl ether	ND	100	28	ug/L		06/29/20 16:29	06/30/20 13:15	20
4-Chloro-3-methylphenol	ND	100	22	ug/L		06/29/20 16:29	06/30/20 13:15	20
4-Chlorophenyl phenyl ether	ND	100	26	ug/L		06/29/20 16:29	06/30/20 13:15	20
4-Nitrophenol	ND	300	200	ug/L		06/29/20 16:29	06/30/20 13:15	20
Acenaphthene	250	100	16	ug/L		06/29/20 16:29	06/30/20 13:15	20
Acenaphthylene	ND	100	17	ug/L		06/29/20 16:29	06/30/20 13:15	20
Anthracene	84 J	100	28	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzidine	ND *1	1600	700	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzo[a]anthracene	47 J	100	22	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzo[a]pyrene	51 J	100	26	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzo[b]fluoranthene	26 J	100	24	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzo[g,h,i]perylene	ND	100	30	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzo[k]fluoranthene	ND	100	26	ug/L		06/29/20 16:29	06/30/20 13:15	20
Bis(2-chloroethoxy)methane	ND	100	15	ug/L		06/29/20 16:29	06/30/20 13:15	20
Bis(2-chloroethyl)ether	ND	100	19	ug/L		06/29/20 16:29	06/30/20 13:15	20
Bis(2-ethylhexyl) phthalate	ND	200	24	ug/L		06/29/20 16:29	06/30/20 13:15	20
Butyl benzyl phthalate	ND	100	22	ug/L		06/29/20 16:29	06/30/20 13:15	20
Chrysene	41 J	100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
Dibenz(a,h)anthracene	ND	100	30	ug/L		06/29/20 16:29	06/30/20 13:15	20
Diethyl phthalate	ND	100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
Dimethyl phthalate	ND	100	18	ug/L		06/29/20 16:29	06/30/20 13:15	20
Di-n-butyl phthalate	ND	100	32	ug/L		06/29/20 16:29	06/30/20 13:15	20

Eurofins TestAmerica, Buffalo

Job ID: 480-171773-1

Lab Sample ID: 480-171773-1 Matrix: Water

. .

06/29/20 22:11

6

4

13

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Pentachlorophenol

2,4,6-Tribromophenol (Surr)

Nitrobenzene

Pyridine

Surrogate

2-Fluorobiphenyl

Phenol-d5 (Surr)

2-Fluorophenol (Surr)

Nitrobenzene-d5 (Surr)

p-Terphenyl-d14 (Surr)

Job ID: 480-171773-1

Lab Sample ID: 480-171773-1

Matrix: Water

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate	ND		100	24	ug/L		06/29/20 16:29	06/30/20 13:15	20
Fluoranthene	83	J	100	32	ug/L		06/29/20 16:29	06/30/20 13:15	20
Fluorene	99	J	100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
Hexachlorobenzene	ND		100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
Hexachlorobutadiene	ND		100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
Hexachlorocyclopentadiene	ND		200	100	ug/L		06/29/20 16:29	06/30/20 13:15	20
Hexachloroethane	ND		100	12	ug/L		06/29/20 16:29	06/30/20 13:15	2
Indeno[1,2,3-cd]pyrene	ND		100	30	ug/L		06/29/20 16:29	06/30/20 13:15	2
sophorone	ND		100	15	ug/L		06/29/20 16:29	06/30/20 13:15	2
Naphthalene	820		100	17	ug/L		06/29/20 16:29	06/30/20 13:15	2
Nitrobenzene	ND		100	16	ug/L		06/29/20 16:29	06/30/20 13:15	2
N-Nitrosodimethylamine	ND		200	100	ug/L		06/29/20 16:29	06/30/20 13:15	2
N-Nitrosodi-n-propylamine	ND		100	18	ug/L		06/29/20 16:29	06/30/20 13:15	2
N-Nitrosodiphenylamine	ND		100	7.9	ug/L		06/29/20 16:29	06/30/20 13:15	2
Pentachlorophenol	ND		200	32	ug/L		06/29/20 16:29	06/30/20 13:15	2
Phenanthrene	320		100	24	ug/L		06/29/20 16:29	06/30/20 13:15	2
Phenol	ND		100	7.0	ug/L		06/29/20 16:29	06/30/20 13:15	2
Pyrene	160		100	28	ug/L		06/29/20 16:29	06/30/20 13:15	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	94		52 - 151				06/29/20 16:29	06/30/20 13:15	2
2-Fluorobiphenyl	88		44 - 120				06/29/20 16:29	06/30/20 13:15	2
2-Fluorophenol	39		17 - 120				06/29/20 16:29	06/30/20 13:15	2
Nitrobenzene-d5	76		15_314				06/29/20 16:29	06/30/20 13:15	2
Phenol-d5	28		8 - 424				06/29/20 16:29	06/30/20 13:15	2
o-Terphenyl-d14 (Surr)	67		22 - 125				06/29/20 16:29	06/30/20 13:15	2
Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte		Qualifier	ŔL		Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dichlorobenzene	ND		10	0.46	ug/L		06/30/20 15:20	07/01/20 12:27	
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		06/30/20 15:20	07/01/20 12:27	
2,4,5-Trichlorophenol	ND	*	5.0	0.48	ug/L		06/30/20 15:20	07/01/20 12:27	
2,4,6-Trichlorophenol	ND	*	5.0	0.61	ug/L		06/30/20 15:20	07/01/20 12:27	
2-Methylphenol	0.82	J	5.0	0.40	ug/L		06/30/20 15:20	07/01/20 12:27	
3-Methylphenol	6.2	J	10	0.40	ug/L		06/30/20 15:20	07/01/20 12:27	
4-Methylphenol	6.2	J	10	0.36	ug/L		06/30/20 15:20	07/01/20 12:27	
			5.0	0.54				07/04/00 40:07	

Prepared

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

Analyzed

5.0

5.0

5.0

5.0

10

25

Limits

41 - 120

48 - 120

35 - 120

46 - 120

0.51 ug/L

0.68 ug/L

0.59 ug/L

0.29 ug/L

2.2 ug/L

0.41 ug/L

ND

ND

ND

ND

ND

ND

%Recovery Qualifier

137 X

98

75

104

89

53

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

Job ID: 480-171773-1

Lab Sample ID: 480-171773-1 Matrix: Water

Method: 608.3 - Polychlorir Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		0.060	0.038	ug/L		07/01/20 15:48	07/03/20 03:05	-
PCB-1221	ND		0.060	0.038	-		07/01/20 15:48	07/03/20 03:05	
PCB-1232	ND		0.060	0.038	-		07/01/20 15:48	07/03/20 03:05	
PCB-1242	ND		0.060	0.038	J			07/03/20 03:05	
PCB-1248	ND		0.060	0.038	-			07/03/20 03:05	
PCB-1254	ND		0.060	0.031	-			07/03/20 03:05	
PCB-1260	ND		0.060	0.031	-			07/03/20 03:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl			36 - 121				07/01/20 15:48	07/03/20 03:05	
Tetrachloro-m-xylene (Surr)	42		42 - 135				07/01/20 15:48	07/03/20 03:05	
Method: 1631E - Mercury, L	ow Level (CV								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	35.1		1.0	0.28	ng/L		07/01/20 11:00	07/06/20 11:45	
Method: 200.7 Rev 4.4 - Me	tals (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.0091	J	0.015	0.0056	mg/L		06/29/20 09:18	06/29/20 18:23	
Chromium	ND		0.0040	0.0010	mg/L		06/29/20 09:18	06/29/20 18:23	
ron	3.6		0.050	0.019	-		06/29/20 09:18	06/29/20 18:23	
_ead	ND		0.010	0.0030	mg/L		06/29/20 09:18	06/29/20 18:23	
Arsenic, Dissolved Chromium, Dissolved ron, Dissolved .ead, Dissolved	ND ND ND ND		0.015 0.0040 0.050 0.010	0.0056 0.0010 0.019 0.0030	mg/L mg/L		07/02/20 09:03	07/02/20 16:22 07/02/20 16:22 07/02/20 16:22 07/02/20 16:22	
Method: 6010C - Metals (IC	P)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.0076	J	0.015	0.0056	mg/L		07/02/20 10:00	07/02/20 20:31	
Barium	0.048	^	0.0020	0.00070	mg/L		07/02/20 10:00	07/02/20 20:31	
Cadmium	ND		0.0020	0.00050	mg/L		07/02/20 10:00	07/02/20 20:31	
Chromium	ND		0.0040	0.0010	mg/L		07/02/20 10:00	07/02/20 20:31	
_ead	ND		0.010	0.0030	mg/L		07/02/20 10:00	07/02/20 20:31	
Selenium	ND		0.025	0.0087	mg/L		07/02/20 10:00	07/02/20 20:31	
Silver	ND		0.0060	0.0017	mg/L		07/02/20 10:00	07/02/20 20:31	
Method: 7470A - Mercury (
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		06/30/20 12:40	06/30/20 18:54	
General Chemistry	Decult	Qualifier	Ы	MDI	11		Drenered	Anolymod	
Analyte Dil & Grease		Qualifier		MDL		D	Prepared	Analyzed	Dil Fa
	5.3		4.7		mg/L		06/29/20 16:43		
Fluoride	0.099		0.050	0.026	-			06/30/20 17:37	
Quanida Tatal								DG/20/20 40.45	
Cyanide, Total Chemical Oxygen Demand	ND 57.8		0.010 10.0	0.0050	mg/L mg/L		06/30/20 11:22	06/30/20 12:45 06/28/20 06:50	

Eurofins TestAmerica, Buffalo

RL

10.0

0.010

0.10

6.0

6.0

1.0

RL

4.0

0.1

0.001

Result Qualifier

194

ND H

ND HF

11.9 b

16.5 b

Result Qualifier

7.4 HF

19.1 HF

14.5

10.8

MDL Unit

0.0050 mg/L

0.075 mg/L

6.0 mg/L

6.0 mg/L

0.43 mg/L

RL Unit

4.0 mg/L

0.001 Degrees C

0.1 SU

4.0 mg/L

D

D

Prepared

Prepared

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

General Chemistry (Continued)

Analyte

Analyte

Temperature

pН

Ferrous Iron

Total Dissolved Solids

Biochemical Oxygen Demand

Carbonaceous Biochemical

Chromium, hexavalent

Oxygen Demand

Total Organic Carbon

Total Suspended Solids

Job ID: 480-171773-1

Analyzed

06/30/20 14:57

06/27/20 11:02

06/27/20 15:55

06/27/20 06:33

06/27/20 06:33

06/30/20 21:37

Analyzed

06/27/20 11:05

06/30/20 14:00

06/30/20 14:00

Lab Sample ID: 480-171773-1 Matrix: Water

Dil Fac

1

1

1

1

1

1

1

1

1

Dil Fac

Eurofins TestAmerica, Buffalo

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Method: 624.1 - Volatile Org Analyte		nds (GC/MS) Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1-Trichloroethane			50		ug/L		Tiepareu	06/27/20 20:57	10	
1,1,2,2-Tetrachloroethane	ND		50		ug/L			06/27/20 20:57	10	6
1,1,2-Trichloroethane	ND		50		ug/L			06/27/20 20:57	10	U
1.1-Dichloroethane	ND		50		ug/L			06/27/20 20:57	10	7
1.1-Dichloroethene	ND		50		ug/L			06/27/20 20:57	10	
1,2-Dichlorobenzene	ND		50		ug/L			06/27/20 20:57	10	0
1,2-Dichloroethane	ND		50		ug/L			06/27/20 20:57	10	ð
1,2-Dichloroethene, Total	ND		100		ug/L			06/27/20 20:57	10	
1,2-Dichloropropane	ND		50		ug/L			06/27/20 20:57	10	9
1,3-Dichlorobenzene	ND		50	5.4	ug/L			06/27/20 20:57	10	10
1,4-Dichlorobenzene	ND		50		ug/L			06/27/20 20:57	10	10
2-Chloroethyl vinyl ether	ND		250		ug/L			06/27/20 20:57	10	
Acrolein	ND		1000	170	ug/L			06/27/20 20:57	10	11
Acrylonitrile	ND		500		ug/L			06/27/20 20:57	10	
Benzene	73		50	6.0	ug/L			06/27/20 20:57	10	12
Bromoform	ND		50	4.7	ug/L			06/27/20 20:57	10	
Bromomethane	ND		50	12	ug/L			06/27/20 20:57	10	13
Carbon tetrachloride	ND		50	5.1	ug/L			06/27/20 20:57	10	_
Chlorobenzene	ND		50	4.8	ug/L			06/27/20 20:57	10	14
Chlorodibromomethane	ND		50	4.1	ug/L			06/27/20 20:57	10	
Chloroethane	ND		50	8.7	ug/L			06/27/20 20:57	10	15
Chloroform	ND		50	5.4	ug/L			06/27/20 20:57	10	
Chloromethane	ND		50	6.4	ug/L			06/27/20 20:57	10	
cis-1,3-Dichloropropene	ND		50		ug/L			06/27/20 20:57	10	
Dichlorobromomethane	ND		50		ug/L			06/27/20 20:57	10	
Ethylbenzene	130		50	4.6	ug/L			06/27/20 20:57	10	
Methylene Chloride	ND		50		ug/L			06/27/20 20:57	10	
Tetrachloroethene	ND		50		ug/L			06/27/20 20:57	10	
Toluene	ND		50		ug/L			06/27/20 20:57	10	
trans-1,2-Dichloroethene	ND		50		ug/L			06/27/20 20:57	10	
trans-1,3-Dichloropropene	ND		50		ug/L			06/27/20 20:57	10	
Trichloroethene	ND		50		ug/L			06/27/20 20:57	10	
Vinyl chloride	ND		50	7.5	ug/L			06/27/20 20:57	10	

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	68 - 130		06/27/20 20:57	10
4-Bromofluorobenzene (Surr)	99	76 - 123		06/27/20 20:57	10
Dibromofluoromethane (Surr)	102	75 - 123		06/27/20 20:57	10
Toluene-d8 (Surr)	96	77 - 120		06/27/20 20:57	10

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		5.0	1.1	ug/L			06/29/20 22:34	5
2-Butanone (MEK)	ND		50	6.6	ug/L			06/29/20 22:34	5
Benzene	50		5.0	2.1	ug/L			06/29/20 22:34	5
Carbon tetrachloride	ND		5.0	1.4	ug/L			06/29/20 22:34	5
Chlorobenzene	ND		5.0	3.8	ug/L			06/29/20 22:34	5
Chloroform	ND		5.0	1.7	ug/L			06/29/20 22:34	5
Tetrachloroethene	ND		5.0	1.8	ug/L			06/29/20 22:34	5
Trichloroethene	ND		5.0	2.3	ug/L			06/29/20 22:34	5

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-171773-2 **Matrix: Water**

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

106

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0	4.5	ug/L			06/29/20 22:34	5
1,1-Dichloroethene	ND		5.0	1.5	ug/L			06/29/20 22:34	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery 107	Qualifier	Limits				Prepared	Analyzed 06/29/20 22:34	Dil Fac
		Qualifier					Prepared		Dil Fac 5 5

75 - 123

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Dibromofluoromethane (Surr)

Method: 625.1 - Semivolatile Analyte	Organic Compounds (GC Result Qualifier	C/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene		100		ug/L		06/29/20 16:29		10
1,2-Dichlorobenzene	ND	100	50	-		06/29/20 16:29		10
1,2-Diphenylhydrazine	ND	100		ug/L ug/L		06/29/20 16:29		10
1,3-Dichlorobenzene	ND	100				06/29/20 16:29		10
	ND			ug/L				
1,4-Dichlorobenzene		100		ug/L		06/29/20 16:29		10
2,2'-oxybis[1-chloropropane]	ND	50				06/29/20 16:29		10
2,4,6-Trichlorophenol	ND	50	10	ug/L		06/29/20 16:29		10
2,4-Dichlorophenol	ND	50	7.7	ug/L		06/29/20 16:29		10
2,4-Dimethylphenol	ND	50	14	ug/L		06/29/20 16:29		10
2,4-Dinitrophenol	ND	100		ug/L		06/29/20 16:29		10
2,4-Dinitrotoluene	ND	100		ug/L		06/29/20 16:29		10
2,6-Dinitrotoluene	ND	50		ug/L		06/29/20 16:29		10
2-Chloronaphthalene	ND	50	9.1	ug/L		06/29/20 16:29		10
2-Chlorophenol	ND	50	6.6	ug/L		06/29/20 16:29		10
2-Nitrophenol	ND	50		ug/L		06/29/20 16:29	06/30/20 13:39	10
3,3'-Dichlorobenzidine	ND	50		ug/L		06/29/20 16:29	06/30/20 13:39	10
4,6-Dinitro-2-methylphenol	ND	100	6.6	ug/L		06/29/20 16:29	06/30/20 13:39	10
4-Bromophenyl phenyl ether	ND	50	14	ug/L		06/29/20 16:29	06/30/20 13:39	10
4-Chloro-3-methylphenol	ND	50	11	ug/L		06/29/20 16:29	06/30/20 13:39	10
4-Chlorophenyl phenyl ether	ND	50	13	ug/L		06/29/20 16:29	06/30/20 13:39	10
4-Nitrophenol	ND	150	100	ug/L		06/29/20 16:29	06/30/20 13:39	10
Acenaphthene	12 J	50	8.1	ug/L		06/29/20 16:29	06/30/20 13:39	10
Acenaphthylene	ND	50	8.7	ug/L		06/29/20 16:29	06/30/20 13:39	10
Anthracene	ND	50	14	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzidine	ND *1	800	350	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzo[a]anthracene	ND	50	11	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzo[a]pyrene	ND	50	13	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzo[b]fluoranthene	ND	50	12	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzo[g,h,i]perylene	ND	50	15	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzo[k]fluoranthene	ND	50	13	ug/L		06/29/20 16:29	06/30/20 13:39	10
Bis(2-chloroethoxy)methane	ND	50	7.5	ug/L		06/29/20 16:29	06/30/20 13:39	10
Bis(2-chloroethyl)ether	ND	50	9.3	ug/L		06/29/20 16:29	06/30/20 13:39	10
Bis(2-ethylhexyl) phthalate	33 J	100		ug/L		06/29/20 16:29	06/30/20 13:39	10
Butyl benzyl phthalate	ND	50		ug/L		06/29/20 16:29	06/30/20 13:39	10
Chrysene	ND	50		ug/L		06/29/20 16:29		10
Dibenz(a,h)anthracene	ND	50		ug/L		06/29/20 16:29	06/30/20 13:39	10
Diethyl phthalate	ND	50		ug/L		06/29/20 16:29		10
Dimethyl phthalate	ND	50		•		06/29/20 16:29		10
Di-n-butyl phthalate	ND	50		ug/L		06/29/20 16:29		10
			.0					

Eurofins TestAmerica, Buffalo

Matrix: Water

Lab Sample ID: 480-171773-2

06/29/20 22:34

5

Page 15 of 54

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate	ND		50	12	ug/L		06/29/20 16:29	06/30/20 13:39	10
Fluoranthene	ND		50	16	ug/L		06/29/20 16:29	06/30/20 13:39	10
Fluorene	11	J	50	10	ug/L		06/29/20 16:29	06/30/20 13:39	10
Hexachlorobenzene	ND		50	10	ug/L		06/29/20 16:29	06/30/20 13:39	10
Hexachlorobutadiene	ND		50	10	ug/L		06/29/20 16:29	06/30/20 13:39	10
Hexachlorocyclopentadiene	ND		100	50	ug/L		06/29/20 16:29	06/30/20 13:39	10
Hexachloroethane	ND		50	6.0	ug/L		06/29/20 16:29	06/30/20 13:39	10
Indeno[1,2,3-cd]pyrene	ND		50	15	ug/L		06/29/20 16:29	06/30/20 13:39	10
Isophorone	ND		50	7.4	ug/L		06/29/20 16:29	06/30/20 13:39	10
Naphthalene	ND		50	8.6	ug/L		06/29/20 16:29	06/30/20 13:39	10
Nitrobenzene	ND		50	8.1	ug/L		06/29/20 16:29	06/30/20 13:39	10
N-Nitrosodimethylamine	ND		100	50	ug/L		06/29/20 16:29	06/30/20 13:39	10
N-Nitrosodi-n-propylamine	ND		50	8.9	ug/L		06/29/20 16:29	06/30/20 13:39	10
N-Nitrosodiphenylamine	ND		50	4.0	ug/L		06/29/20 16:29	06/30/20 13:39	10
Pentachlorophenol	ND		100	16	ug/L		06/29/20 16:29	06/30/20 13:39	10
Phenanthrene	ND		50	12	ug/L		06/29/20 16:29	06/30/20 13:39	10
Phenol	ND		50	3.5	ug/L		06/29/20 16:29	06/30/20 13:39	10
Pyrene	ND		50	14	ug/L		06/29/20 16:29	06/30/20 13:39	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	94		52 - 151				06/29/20 16:29	06/30/20 13:39	10
2-Fluorobiphenyl	82		44 - 120				06/29/20 16:29	06/30/20 13:39	10
2-Fluorophenol	43		17 - 120				06/29/20 16:29	06/30/20 13:39	10
Nitrobenzene-d5	78		15_314				06/29/20 16:29	06/30/20 13:39	10

8 - 424

22 - 125

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

30

88

Phenol-d5

p-Terphenyl-d14 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		10	0.46	ug/L		06/30/20 15:20	07/01/20 12:56	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		06/30/20 15:20	07/01/20 12:56	1
2,4,5-Trichlorophenol	ND	*	5.0	0.48	ug/L		06/30/20 15:20	07/01/20 12:56	1
2,4,6-Trichlorophenol	ND	*	5.0	0.61	ug/L		06/30/20 15:20	07/01/20 12:56	1
2-Methylphenol	2.6	J	5.0	0.40	ug/L		06/30/20 15:20	07/01/20 12:56	1
3-Methylphenol	ND		10	0.40	ug/L		06/30/20 15:20	07/01/20 12:56	1
4-Methylphenol	ND		10	0.36	ug/L		06/30/20 15:20	07/01/20 12:56	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		06/30/20 15:20	07/01/20 12:56	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		06/30/20 15:20	07/01/20 12:56	1
Hexachloroethane	ND		5.0	0.59	ug/L		06/30/20 15:20	07/01/20 12:56	1
Nitrobenzene	ND		5.0	0.29	ug/L		06/30/20 15:20	07/01/20 12:56	1
Pentachlorophenol	ND		10	2.2	ug/L		06/30/20 15:20	07/01/20 12:56	1
Pyridine	ND		25	0.41	ug/L		06/30/20 15:20	07/01/20 12:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	148	X	41 - 120				06/30/20 15:20	07/01/20 12:56	1
2-Fluorobiphenyl	116		48 - 120				06/30/20 15:20	07/01/20 12:56	1
2-Fluorophenol (Surr)	80		35 - 120				06/30/20 15:20	07/01/20 12:56	1
Nitrobenzene-d5 (Surr)	112		46 - 120				06/30/20 15:20	07/01/20 12:56	1
p-Terphenyl-d14 (Surr)	118		60 - 148				06/30/20 15:20	07/01/20 12:56	1
Phenol-d5 (Surr)	60		22 - 120				06/30/20 15:20	07/01/20 12:56	1

5 6

Lab Sample ID: 480-171773-2 Matrix: Water

06/29/20 16:29 06/30/20 13:39

06/29/20 16:29 06/30/20 13:39

10

10

RL

MDL Unit

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Analyte

Phenolics, Total Recoverable

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Result Qualifier

Lab Sample ID: 480-171773-2 Matrix: Water

Dil Fac

Analyzed

Prepared

D

							-	•	
PCB-1016	ND		0.060	0.038	ug/L		07/01/20 15:48	07/03/20 03:18	1
PCB-1221	ND		0.060	0.038	ug/L		07/01/20 15:48	07/03/20 03:18	1
PCB-1232	ND		0.060	0.038	ug/L		07/01/20 15:48	07/03/20 03:18	1
PCB-1242	ND		0.060	0.038	ug/L		07/01/20 15:48	07/03/20 03:18	1
PCB-1248	ND		0.060	0.038	-		07/01/20 15:48	07/03/20 03:18	1
PCB-1254	ND		0.060	0.031	ug/L		07/01/20 15:48	07/03/20 03:18	1
PCB-1260	ND		0.060	0.031	0		07/01/20 15:48	07/03/20 03:18	1
					•				
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	25	X	36 - 121				07/01/20 15:48	07/03/20 03:18	1
Tetrachloro-m-xylene (Surr)	57		42 - 135				07/01/20 15:48	07/03/20 03:18	1
Method: 1631E - Mercury, Low			-		11	-	D	• · · · • · · · · ·	D 11 F
Analyte		Qualifier			Unit	D	Prepared 07/01/20 11:00	Analyzed 07/06/20 11:59	Dil Fac
Mercury	3.8		0.50	0.14	ng/L		07/01/20 11.00	07/06/20 11.59	I
Method: 200.7 Rev 4.4 - Metals									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056			06/29/20 09:18	06/29/20 18:19	1
Chromium	0.0022	J	0.0040	0.0010	-		06/29/20 09:18	06/29/20 18:19	1
Iron	1.3	•	0.050	0.019	-			06/29/20 18:19	1
Lead	0.0047	J	0.010	0.0030				06/29/20 18:19	
		-							
Method: 200.7 Rev 4.4 - Metals	(ICP) - Dis	solved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	ND		0.015	0.0056	mg/L		07/02/20 09:03	07/02/20 16:40	1
Chromium, Dissolved	ND		0.0040	0.0010	mg/L		07/02/20 09:03	07/02/20 16:40	1
Iron, Dissolved	ND		0.050	0.019	mg/L		07/02/20 09:03	07/02/20 16:40	1
Lead, Dissolved	ND		0.010	0.0030	mg/L		07/02/20 09:03	07/02/20 16:40	1
<u>с</u> Г									
Method: 6010C - Metals (ICP)						_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	-		07/02/20 10:00	07/02/20 20:35	1
Barium	0.034	^	0.0020	0.00070	0		07/02/20 10:00	07/02/20 20:35	1
Cadmium	ND		0.0020	0.00050				07/02/20 20:35	1
Chromium	0.0021		0.0040	0.0010	-			07/02/20 20:35	1
Lead	0.0040	J	0.010	0.0030	0			07/02/20 20:35	1
Selenium	ND		0.025	0.0087				07/02/20 20:35	1
Silver	ND		0.0060	0.0017	mg/L		07/02/20 10:00	07/02/20 20:35	1
Method: 7470A - Mercury (CVA		Qualifiar	Ы	МП	Unit	_	Bronorod	Analyzad	Dil Eso
Analyte Mercury	ND	Qualifier	RL 0.00020	0.00012	Unit	D	Prepared 06/30/20 12:40	Analyzed 06/30/20 18:55	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		00/30/20 12.40	00/30/20 10.55	I
General Chemistry									
Analyte	Result	Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fac
Oil & Grease	2.9		4.8		mg/L		06/29/20 16:43	06/30/20 19:40	1
Fluoride	0.17	-	0.10	0.052	-			06/30/20 17:51	2
Cyanide, Total	ND		0.010	0.0050	-		06/30/20 11:22	06/30/20 12:47	1
Chemical Oxygen Demand	858		100		mg/L		55,55,20 11.22	07/01/20 17:59	10
onennical Oxygen Demanu	000		100	50.0	ing/L			51/01/20 11.39	10

Eurofins TestAmerica, Buffalo

07/02/20 15:48

0.010

0.0035 mg/L

0.040

1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Job ID: 480-171773-1

Lab Sample ID: 480-171773-2 Matrix: Water

General Chemistry (Continued) Dil Fac Analyte RL MDL Unit **Result Qualifier** D Prepared Analyzed **Total Dissolved Solids** 387 10.0 4.0 mg/L 06/30/20 14:57 1 Chromium, hexavalent ND H 0.010 0.0050 mg/L 06/27/20 11:02 1 Ferrous Iron ND HF 0.10 0.075 mg/L 06/27/20 15:55 1 **Biochemical Oxygen Demand** 99.6 b 60.0 60.0 mg/L 06/27/20 06:33 1 24.0 24.0 mg/L 06/27/20 06:33 1 **Carbonaceous Biochemical** 98.8 b **Oxygen Demand** 07/02/20 20:34 4.0 1.7 mg/L **Total Organic Carbon** 183 4 **Result Qualifier** RL **RL** Unit Dil Fac Analyte D Prepared Analyzed 4.0 4.0 mg/L 06/27/20 11:05 **Total Suspended Solids** 16.4 1 7.5 HF 0.1 0.1 SU 06/30/20 14:03 1 pН 0.001 Degrees C 0.001 06/30/20 14:03 Temperature 19.3 HF 1

7/7/2020

Surrogate Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 624.1 - Volatile Organic Compounds (GC/MS)

latrix: Water						Prep Type: Total/N
-			Pe	ercent Surro	ogate Recover	ry (Acceptance Limits)
		DCA	BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)	
480-171773-1	GEOBAG FILTRATE	103	101	103	101	
480-171773-2	FILTER PRESS FILTRATE	99	99	102	96	
LCS 480-538351/5	Lab Control Sample	101	103	100	100	
MB 480-538351/7	Method Blank	101	101	103	97	
Surrogate Legend						
DCA = 1,2-Dichloroe	hane-d4 (Surr)					
BFB = 4-Bromofluoro	benzene (Surr)					
DBFM = Dibromofluo	romethane (Surr)					
TOL = Toluene-d8 (S	urr)					

Method: 8260C - Volatile Organic Compounds by GC/MS **Matrix: Water**

			_		
			Pe	ercent Surro	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)
480-171773-1	GEOBAG FILTRATE	112	106	94	108
480-171773-2	FILTER PRESS FILTRATE	107	106	97	106
LCS 480-538566/5	Lab Control Sample	108	109	96	110
MB 480-538566/7	Method Blank	110	105	96	111

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) Matrix: Water

Prep Type: Total/NA

Prep Type: Total/NA

_			Pe	ercent Surro	ogate Recov	very (Acce	ptance Lim
		TBP	FBP	2FP	NBZ	PHL	TPHd14
Lab Sample ID	Client Sample ID	(52-151)	(44-120)	(17-120)	(15-314)	(8-424)	(22-125)
480-171773-1	GEOBAG FILTRATE	94	88	39	76	28	67
480-171773-2	FILTER PRESS FILTRATE	94	82	43	78	30	88
LCS 480-538584/2-A	Lab Control Sample	121	85	50	87	35	108
LCSD 480-538584/3-A	Lab Control Sample Dup	110	86	46	85	33	107
MB 480-538584/1-A	Method Blank	110	89	51	92	35	109

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPHd14 = p-Terphenyl-d14 (Surr)

Surrogate Summary

FBP

(48-120)

98

116

105

106

2FP

(35 - 120)

75

80

84

79

TBP

(41-120)

137 X

148 X

130 X

104

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Client Sample ID

GEOBAG FILTRATE

Lab Control Sample

Method Blank

FILTER PRESS FILTRATE

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water

Lab Sample ID

480-171773-1

480-171773-2

Matrix: Water

LCS 480-538762/2-A

MB 480-538762/1-A

Surrogate Legend

FBP = 2-Fluorobiphenyl 2FP = 2-Fluorophenol (Surr) NBZ = Nitrobenzene-d5 (Surr) TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

Percent Surrogate Recovery (Acceptance Limits)

NBZ (46-120)

104

112

105

104

TPHd14

(60-148)

89

118

112

112

PHL

(22-120)

53

60

65

56

5
7
8
9

Prep Type: Total/NA

-			Per	rcent Surrogate Recovery (Acceptance Limits)	
		DCBP1	TCX1		13
Lab Sample ID	Client Sample ID	(36-121)	(42-135)		
480-171773-1	GEOBAG FILTRATE	20 X	42		
480-171773-2	FILTER PRESS FILTRATE	25 X	57		
LCS 480-538962/2-A	Lab Control Sample	43	72		
LCSD 480-538962/3-A	Lab Control Sample Dup	44	65		
MB 480-538962/1-A	Method Blank	47	71		
1					

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene (Surr)

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 624.1 - Volatile Organic Compounds (GC/MS)

ND

ND

ND

ND

ND

ND

Lab Sample ID: MB 480-538351/7 **Matrix: Water** Analysis

Methylene Chloride

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Toluene

Watth, Water								Fieh Type. It		
Analysis Batch: 538351										Ì
Anglista		MB	RL	MDI	Unit		Drenered	Analyzad		
Analyte		Qualifier				<u>D</u>	Prepared	Analyzed	Dil Fac	
1,1,1-Trichloroethane	ND		5.0		ug/L			06/27/20 14:04	1	
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			06/27/20 14:04	1	
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/27/20 14:04	1	
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/27/20 14:04	1	2
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/27/20 14:04	1	
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/27/20 14:04	1	
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/27/20 14:04	1	
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/27/20 14:04	1	
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/27/20 14:04	1	
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/27/20 14:04	1	
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/27/20 14:04	1	
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/27/20 14:04	1	
Acrolein	ND		100	17	ug/L			06/27/20 14:04	1	
Acrylonitrile	ND		50	1.9	ug/L			06/27/20 14:04	1	
Benzene	ND		5.0	0.60	ug/L			06/27/20 14:04	1	ï
Bromoform	ND		5.0	0.47	ug/L			06/27/20 14:04	1	
Bromomethane	ND		5.0	1.2	ug/L			06/27/20 14:04	1	i
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/27/20 14:04	1	
Chlorobenzene	ND		5.0	0.48	ug/L			06/27/20 14:04	1	
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/27/20 14:04	1	
Chloroethane	ND		5.0	0.87	ug/L			06/27/20 14:04	1	
Chloroform	ND		5.0	0.54	ug/L			06/27/20 14:04	1	
Chloromethane	ND		5.0	0.64	ug/L			06/27/20 14:04	1	
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/27/20 14:04	1	
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/27/20 14:04	1	
Ethylbenzene	ND		5.0	0.46	ug/L			06/27/20 14:04	1	

Vinyl chloride	ND		5.0	0.75 ug/L		06/27/20 14:04	1
	MB	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		68 - 130			06/27/20 14:04	1
4-Bromofluorobenzene (Surr)	101		76 - 123			06/27/20 14:04	1
Dibromofluoromethane (Surr)	103		75 - 123			06/27/20 14:04	1
Toluene-d8 (Surr)	97		77 - 120			06/27/20 14:04	1

5.0

5.0

5.0

5.0

5.0

5.0

0.81 ug/L

0.34 ug/L

0.45 ug/L

0.59 ug/L

0.44 ug/L

0.60 ug/L

Lab Sample ID: LCS 480-538351/5 Matrix: Water Analysis Batch: 538351

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	19.3		ug/L		96	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	19.6		ug/L		98	46 - 157	
1,1,2-Trichloroethane	20.0	20.0		ug/L		100	52 - 150	

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

06/27/20 14:04

06/27/20 14:04

06/27/20 14:04

06/27/20 14:04

06/27/20 14:04

06/27/20 14:04

Prep Type: Total/NA

Client Sample ID: Method Blank

1

1

1

1

1

1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Job ID: 480-171773-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

2 3 4

	Method: 624.1 - Volat	ile Organic Compounds	(GC/MS) (Continued)
--	-----------------------	-----------------------	---------------------

Lab Sample ID: LCS 480-538351/5 Matrix: Water

Analysis Batch: 538351			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane			20.0	19.0		ug/L		95	59 - 155	
1,1-Dichloroethene			20.0	19.6		ug/L		98	1 - 234	
1,2-Dichlorobenzene			20.0	19.4		ug/L		97	18 ₋ 190	
1,2-Dichloroethane			20.0	18.6		ug/L		93	49 ₋ 155	
1,2-Dichloropropane			20.0	18.8		ug/L		94	1_210	
1,3-Dichlorobenzene			20.0	18.9		ug/L		95	59 ₋ 156	
1,4-Dichlorobenzene			20.0	19.0		ug/L		95	18 - 190	
2-Chloroethyl vinyl ether			20.0	19.7	J	ug/L		99	1 _ 305	
Benzene			20.0	19.1		ug/L		96	37 ₋ 151	
Bromoform			20.0	19.6		ug/L		98	45 ₋ 169	
Bromomethane			20.0	19.1		ug/L		95	1 _ 242	
Carbon tetrachloride			20.0	19.4		ug/L		97	70 - 140	
Chlorobenzene			20.0	18.9		ug/L		95	37 - 160	
Chlorodibromomethane			20.0	19.2		ug/L		96	53 - 149	
Chloroethane			20.0	19.5		ug/L		98	14 - 230	
Chloroform			20.0	18.9		ug/L		95	51 - 138	
Chloromethane			20.0	18.5		ug/L		93	1 - 273	
cis-1,3-Dichloropropene			20.0	19.2		ug/L		96	1 _ 227	
Dichlorobromomethane			20.0	18.9		ug/L		94	35 - 155	
Ethylbenzene			20.0	19.3		ug/L		96	37 - 162	
Methylene Chloride			20.0	18.1		ug/L		90	1 - 221	
Tetrachloroethene			20.0	19.2		ug/L		96	64 - 148	
Toluene			20.0	19.1		ug/L		96	47 - 150	
trans-1,2-Dichloroethene			20.0	18.9		ug/L		94	54 - 156	
trans-1,3-Dichloropropene			20.0	19.5		ug/L		97	17 - 183	
Trichloroethene			20.0	18.8		ug/L		94	71 ₋ 157	
Vinyl chloride			20.0	19.0		ug/L		95	1 - 251	
	LCS	LCS								
Surrogate	%Recovery		Limits							
1,2-Dichloroethane-d4 (Surr)	101		68 - 130							
4-Bromofluorobenzene (Surr)	103		76 - 123							
Dibromofluoromethane (Surr)	100		75 - 123							

Method: 8260C - Volatile Organic Compounds by GC/MS

100

Lab Sample ID: MB 480-538566/7 Matrix: Water Analysis Batch: 538566

Toluene-d8 (Surr)

Client Sample ID: Method Blank Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		1.0	0.21	ug/L			06/29/20 17:07	1
2-Butanone (MEK)	ND		10	1.3	ug/L			06/29/20 17:07	1
Benzene	ND		1.0	0.41	ug/L			06/29/20 17:07	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			06/29/20 17:07	1
Chlorobenzene	ND		1.0	0.75	ug/L			06/29/20 17:07	1
Chloroform	ND		1.0	0.34	ug/L			06/29/20 17:07	1
Tetrachloroethene	ND		1.0	0.36	ug/L			06/29/20 17:07	1
Trichloroethene	ND		1.0	0.46	ug/L			06/29/20 17:07	1

77 - 120

Eurofins TestAmerica, Buffalo

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-538566/7 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 538566

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		1.0	0.90	ug/L			06/29/20 17:07	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			06/29/20 17:07	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		77 - 120					06/29/20 17:07	1
4-Bromofluorobenzene (Surr)	105		73 - 120					06/29/20 17:07	1
Toluene-d8 (Surr)	96		80 - 120					06/29/20 17:07	1
Dibromofluoromethane (Surr)	111		75 - 123					06/29/20 17:07	1

Lab Sample ID: LCS 480-538566/5 Matrix: Water Analysis Batch: 538566

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	25.0	27.5		ug/L		110	75 - 120	
2-Butanone (MEK)	125	126		ug/L		101	57 - 140	
Benzene	25.0	21.8		ug/L		87	71 - 124	
Carbon tetrachloride	25.0	29.4		ug/L		118	72 - 134	
Chlorobenzene	25.0	22.8		ug/L		91	80 - 120	
Chloroform	25.0	25.1		ug/L		100	73 - 127	
Tetrachloroethene	25.0	24.7		ug/L		99	74 - 122	
Trichloroethene	25.0	23.8		ug/L		95	74 ₋ 123	
Vinyl chloride	25.0	25.1		ug/L		100	65 - 133	
1,1-Dichloroethene	25.0	23.9		ug/L		96	66 - 127	
LCS	S LCS							

	LUS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		77 - 120
4-Bromofluorobenzene (Surr)	109		73 - 120
Toluene-d8 (Surr)	96		80 - 120
Dibromofluoromethane (Surr)	110		75 - 123

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-538584/1-A Matrix: Water Analysis Batch: 538685

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		10	0.82	ug/L		06/29/20 16:29	06/30/20 11:38	1
1,2-Dichlorobenzene	ND		10	5.0	ug/L		06/29/20 16:29	06/30/20 11:38	1
1,2-Diphenylhydrazine	ND		10	0.78	ug/L		06/29/20 16:29	06/30/20 11:38	1
1,3-Dichlorobenzene	ND		10	0.69	ug/L		06/29/20 16:29	06/30/20 11:38	1
1,4-Dichlorobenzene	ND		10	5.6	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,2'-oxybis[1-chloropropane]	ND		5.0	0.84	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,4,6-Trichlorophenol	ND		5.0	1.0	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,4-Dichlorophenol	ND		5.0	0.77	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,4-Dimethylphenol	ND		5.0	1.4	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,4-Dinitrophenol	ND		10	5.0	ug/L		06/29/20 16:29	06/30/20 11:38	1

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 538584

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

7/7/2020

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-538584/1-A **Matrix: Water** Analysis Batch: 538685

Pyrene

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 538584

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrotoluene	ND		10	5.0	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,6-Dinitrotoluene	ND		5.0	1.0	ug/L		06/29/20 16:29	06/30/20 11:38	1
2-Chloronaphthalene	ND		5.0	0.91	ug/L		06/29/20 16:29	06/30/20 11:38	1
2-Chlorophenol	ND		5.0	0.66	ug/L		06/29/20 16:29	06/30/20 11:38	1
2-Nitrophenol	ND		5.0	0.70	ug/L		06/29/20 16:29	06/30/20 11:38	1
3,3'-Dichlorobenzidine	ND		5.0	0.82	ug/L		06/29/20 16:29	06/30/20 11:38	1
4,6-Dinitro-2-methylphenol	ND		10	0.66	ug/L		06/29/20 16:29	06/30/20 11:38	1
4-Bromophenyl phenyl ether	ND		5.0	1.4	ug/L		06/29/20 16:29	06/30/20 11:38	1
4-Chloro-3-methylphenol	ND		5.0	1.1	ug/L		06/29/20 16:29	06/30/20 11:38	1
4-Chlorophenyl phenyl ether	ND		5.0	1.3	ug/L		06/29/20 16:29	06/30/20 11:38	1
4-Nitrophenol	ND		15	10	ug/L		06/29/20 16:29	06/30/20 11:38	1
Acenaphthene	ND		5.0	0.81	ug/L		06/29/20 16:29	06/30/20 11:38	1
Acenaphthylene	ND		5.0	0.87	ug/L		06/29/20 16:29	06/30/20 11:38	1
Anthracene	ND		5.0	1.4	ug/L		06/29/20 16:29	06/30/20 11:38	1
Benzidine	ND		80	35	ug/L		06/29/20 16:29	06/30/20 11:38	1
Benzo[a]anthracene	ND		5.0	1.1	ug/L		06/29/20 16:29	06/30/20 11:38	1
Benzo[a]pyrene	ND		5.0		•		06/29/20 16:29	06/30/20 11:38	1
Benzo[b]fluoranthene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Benzo[g,h,i]perylene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Benzo[k]fluoranthene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Bis(2-chloroethoxy)methane	ND		5.0	0.75	-		06/29/20 16:29	06/30/20 11:38	1
Bis(2-chloroethyl)ether	ND		5.0	0.93	-		06/29/20 16:29	06/30/20 11:38	1
Bis(2-ethylhexyl) phthalate	ND		10		ug/L		06/29/20 16:29	06/30/20 11:38	1
Butyl benzyl phthalate	ND		5.0	1.1	ug/L		06/29/20 16:29	06/30/20 11:38	1
Chrysene	ND		5.0		0		06/29/20 16:29	06/30/20 11:38	1
Dibenz(a,h)anthracene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Diethyl phthalate	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Dimethyl phthalate	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Di-n-butyl phthalate	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Di-n-octyl phthalate	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Fluoranthene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Fluorene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Hexachlorobenzene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Hexachlorobutadiene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Hexachlorocyclopentadiene	ND		10		ug/L		06/29/20 16:29	06/30/20 11:38	1
Hexachloroethane	ND		5.0	0.60				06/30/20 11:38	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Isophorone	ND		5.0	0.74			06/29/20 16:29	06/30/20 11:38	1
Naphthalene	ND		5.0	0.86	-		06/29/20 16:29		1
Nitrobenzene	ND		5.0	0.81	-		06/29/20 16:29		1
N-Nitrosodimethylamine	ND		10		ug/L		06/29/20 16:29		1
N-Nitrosodi-n-propylamine	ND		5.0	0.89	-		06/29/20 16:29		1
N-Nitrosodiphenylamine	ND		5.0	0.40	-		06/29/20 16:29		1
Pentachlorophenol	ND		10		ug/L		06/29/20 16:29		1
Phenanthrene	ND		5.0		ug/L		06/29/20 16:29		1
Phenol	ND		5.0	0.35	ug/L		06/29/20 16:29	06/30/20 11:38	1

06/29/20 16:29 06/30/20 11:38

5.0

1.4 ug/L

ND

1

8

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-538584/1-A Matrix: Water Analysis Batch: 538685

Client Sample ID: Lab Control Sample

Job ID: 480-171773-1

Prep Type: Total/NA

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	110		52 - 151	06/29/20 16:29	06/30/20 11:38	1
2-Fluorobiphenyl	89		44 - 120	06/29/20 16:29	06/30/20 11:38	1
2-Fluorophenol	51		17 - 120	06/29/20 16:29	06/30/20 11:38	1
Nitrobenzene-d5	92		15-314	06/29/20 16:29	06/30/20 11:38	1
Phenol-d5	35		8 - 424	06/29/20 16:29	06/30/20 11:38	1
p-Terphenyl-d14 (Surr)	109		22 - 125	06/29/20 16:29	06/30/20 11:38	1

Lab Sample ID: LCS 480-538584/2-A Matrix: Water Analysis Batch: 538685

Analysis Batch: 538685	Spike	LCS	LCS			Prep Batch: 538584 %Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
1,2,4-Trichlorobenzene	50.0	39.3		ug/L	79	44 - 142
1,2-Dichlorobenzene	50.0	34.7		ug/L	69	32 - 129
1,2-Diphenylhydrazine	50.0	50.2		ug/L	100	47 - 146
1,3-Dichlorobenzene	50.0	32.3		ug/L	65	1 - 172
1,4-Dichlorobenzene	50.0	33.6		ug/L	67	20 - 124
2,2'-oxybis[1-chloropropane]	50.0	40.9		ug/L	82	36 - 166
2,4,6-Trichlorophenol	50.0	52.8		ug/L	106	37 - 144
2,4-Dichlorophenol	50.0	48.9		ug/L	98	39 - 135
2,4-Dimethylphenol	50.0	47.6		ug/L	95	32 - 120
2,4-Dinitrophenol	100	125		ug/L	125	1 - 191
2,4-Dinitrotoluene	50.0	52.7		ug/L	105	39 - 139
2,6-Dinitrotoluene	50.0	51.8		ug/L	104	50 - 158
2-Chloronaphthalene	50.0	43.9		ug/L	88	60 - 120
2-Chlorophenol	50.0	39.9		ug/L	80	23 - 134
2-Nitrophenol	50.0	51.3		ug/L	103	29 - 182
3,3'-Dichlorobenzidine	100	108		ug/L	108	1 - 262
4,6-Dinitro-2-methylphenol	100	115		ug/L	115	1 - 181
4-Bromophenyl phenyl ether	50.0	51.7		ug/L	103	53 - 127
4-Chloro-3-methylphenol	50.0	51.3		ug/L	103	22 - 147
4-Chlorophenyl phenyl ether	50.0	48.1		ug/L	96	25 - 158
4-Nitrophenol	100	51.6		ug/L	52	1 - 132
Acenaphthene	50.0	47.0		ug/L	94	47 - 145
Acenaphthylene	50.0	47.7		ug/L	95	33 - 145
Anthracene	50.0	52.0		ug/L	104	27 - 133
Benzidine	100	36.5	J	ug/L	36	1 - 120
Benzo[a]anthracene	50.0	50.8		ug/L	102	33 - 143
Benzo[a]pyrene	50.0	51.9		ug/L	104	17 - 163
Benzo[b]fluoranthene	50.0	52.1		ug/L	104	24 - 159
Benzo[g,h,i]perylene	50.0	52.6		ug/L	105	1 - 219
Benzo[k]fluoranthene	50.0	52.1		ug/L	104	11 - 162
Bis(2-chloroethoxy)methane	50.0	44.4		ug/L	89	33 - 184
Bis(2-chloroethyl)ether	50.0	40.7		ug/L	81	12 - 158
Bis(2-ethylhexyl) phthalate	50.0	53.5		ug/L	107	8 - 158
Butyl benzyl phthalate	50.0	54.7		ug/L	109	1 - 152
Chrysene	50.0	49.9		ug/L	100	17 - 168
Dibenz(a,h)anthracene	50.0	53.1		ug/L	106	1 _ 227

Batch: 538584

8

Eurofins TestAmerica, Buffalo

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Job ID: 480-171773-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-538584/2-A Matrix: Water				Clie	ent Sample ID	: Lab Contro Prep Type:	
Analysis Batch: 538685						Prep Batc	
Analysis Batch. 000000	Spike	LCS	LCS			%Rec.	1. 000004
Analyte	Added		Qualifier	Unit	D %Rec	Limits	
Diethyl phthalate	50.0	50.7		ug/L		1 - 120	
Dimethyl phthalate	50.0	49.2		ug/L	98	1 - 120	
Di-n-butyl phthalate	50.0	55.1		ug/L	110	1 - 120	
Di-n-octyl phthalate	50.0	55.2		ug/L	110	4 - 146	
Fluoranthene	50.0	53.7		ug/L	107	26 - 137	
Fluorene	50.0	47.3		ug/L	95	59 ₋ 121	
Hexachlorobenzene	50.0	51.5		ug/L	103	1 - 152	
Hexachlorobutadiene	50.0	38.3		ug/L	77	24 - 120	
Hexachlorocyclopentadiene	50.0	42.5		ug/L	85	5 - 120	
Hexachloroethane	50.0	33.9		ug/L	68	40 - 120	
Indeno[1,2,3-cd]pyrene	50.0	53.8		ug/L	108	1 ₋ 171	
Isophorone	50.0	47.1		ug/L	94	21 - 196	
Naphthalene	50.0	41.7		ug/L	83	21 - 133	
Nitrobenzene	50.0	44.5		ug/L	89	35 - 180	
N-Nitrosodimethylamine	50.0	22.8		ug/L	46	19 - 120	
N-Nitrosodi-n-propylamine	50.0	45.0		ug/L	90	1 - 230	
N-Nitrosodiphenylamine	50.0	52.2		ug/L	104	54 - 125	
Pentachlorophenol	100	117		ug/L	117	14 ₋ 176	
Phenanthrene	50.0	50.6		ug/L	101	54 - 120	
Phenol	50.0	19.7		ug/L	39	5 - 120	
Pyrene	50.0	50.6		ug/L	101	52 - 120	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	121		52 - 151
2-Fluorobiphenyl	85		44 - 120
2-Fluorophenol	50		17 - 120
Nitrobenzene-d5	87		15-314
Phenol-d5	35		8 - 424
p-Terphenyl-d14 (Surr)	108		22 - 125

Lab Sample ID: LCSD 480-538584/3-A Matrix: Water Analysis Batch: 538685

Analysis Batch: 538685							Prep Ba	-	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	50.0	40.4		ug/L		81	44 - 142	3	34
1,2-Dichlorobenzene	50.0	34.9		ug/L		70	32 - 129	0	38
1,2-Diphenylhydrazine	50.0	49.6		ug/L		99	47 - 146	1	20
1,3-Dichlorobenzene	50.0	33.5		ug/L		67	1 - 172	4	37
1,4-Dichlorobenzene	50.0	34.0		ug/L		68	20 - 124	1	40
2,2'-oxybis[1-chloropropane]	50.0	39.1		ug/L		78	36 - 166	4	36
2,4,6-Trichlorophenol	50.0	54.0		ug/L		108	37 - 144	2	20
2,4-Dichlorophenol	50.0	48.4		ug/L		97	39 - 135	1	23
2,4-Dimethylphenol	50.0	46.1		ug/L		92	32 - 120	3	18
2,4-Dinitrophenol	100	127		ug/L		127	1 _ 191	1	29
2,4-Dinitrotoluene	50.0	53.7		ug/L		107	39 - 139	2	20
2,6-Dinitrotoluene	50.0	52.9		ug/L		106	50 - 158	2	17
2-Chloronaphthalene	50.0	44.9		ug/L		90	60 - 120	2	30

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

5

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-538 Matrix: Water Analysis Batch: 538685	3584/3-A			(Client Sa	ample ID: L	Prep T	b Control Sample Du Prep Type: Total/N Prep Batch: 53858		
Analyte		Spike Added		LCSD Qualifier	Unit	D %Re	%Rec.	RPD	RPD Limit	
2-Chlorophenol		50.0	38.6		ug/L	7	7 23 - 134	4	26	
2-Nitrophenol		50.0	48.8		ug/L	g	8 29 - 182	5	28	
3,3'-Dichlorobenzidine		100	106		ug/L	10	6 1_262	2	31	
4,6-Dinitro-2-methylphenol		100	113		ug/L	11	3 1_181	2	30	
4-Bromophenyl phenyl ether		50.0	50.4		ug/L	10	1 53 - 127	3	16	
4-Chloro-3-methylphenol		50.0	48.6		ug/L	g	7 22 - 147	5	16	
4-Chlorophenyl phenyl ether		50.0	48.0		ug/L	g	6 25 - 158	0	15	
4-Nitrophenol		100	51.2		ug/L	5	1 1_132	1	24	
Acenaphthene		50.0	47.4		ug/L	g	5 47 - 145	1	25	
Acenaphthylene		50.0	48.0		ug/L	g	6 33 - 145	1	22	
Anthracene		50.0	49.6		ug/L	g	9 27 - 133	5	15	
Benzidine		100	61.3	J *1	ug/L	6	1 1 - 120	51	50	
Benzo[a]anthracene		50.0	50.5		ug/L	10	1 33 - 143	1	15	
Benzo[a]pyrene		50.0	53.0		ug/L	10	6 17 - 163	2	15	
Benzo[b]fluoranthene		50.0	56.9		ug/L	11	4 24 - 159	9	17	
Benzo[g,h,i]perylene		50.0	52.8		ug/L	10	6 1_219	0	19	
Benzo[k]fluoranthene		50.0	49.5		ug/L	g	9 11 - 162	5	19	
Bis(2-chloroethoxy)methane		50.0	45.3		ug/L	g	1 33 - 184	2	23	
Bis(2-chloroethyl)ether		50.0	40.1		ug/L	8	0 12 - 158	1	33	
Bis(2-ethylhexyl) phthalate		50.0	54.0		ug/L	10	8 8 - 158	1	15	
Butyl benzyl phthalate		50.0	53.3		ug/L	10	7 1_152	3	15	
Chrysene		50.0	50.2		ug/L	10	0 17 - 168	0	15	
Dibenz(a,h)anthracene		50.0	53.1		ug/L	10	6 1_227	0	18	
Diethyl phthalate		50.0	50.9		ug/L	10	2 1_120	0	15	
Dimethyl phthalate		50.0	50.0		ug/L	10	0 1 - 120	2	15	
Di-n-butyl phthalate		50.0	54.1		ug/L	10	8 1 - 120	2	15	
Di-n-octyl phthalate		50.0	56.1		ug/L	11	2 4 - 146	2	15	
Fluoranthene		50.0	51.8		ug/L	10	4 26 - 137	4	15	
Fluorene		50.0	48.4		ug/L	g	7 59 - 121	2	18	
Hexachlorobenzene		50.0	49.3		ug/L	g	9 1_152	4	15	
Hexachlorobutadiene		50.0	38.0		ug/L	7	6 24 - 120	1	50	
Hexachlorocyclopentadiene		50.0	43.3		ug/L	8	7 5 - 120	2	50	
Hexachloroethane		50.0	33.1		ug/L	6	6 40 - 120	2	43	
Indeno[1,2,3-cd]pyrene		50.0	53.4		ug/L	10		1	17	
Isophorone		50.0	45.8		ug/L	g	2 21 - 196	3	21	
Naphthalene		50.0	41.3		ug/L	8	3 21 - 133	1	31	
Nitrobenzene		50.0	43.1		ug/L	8	6 35 - 180	3	27	
N-Nitrosodimethylamine		50.0	21.8		ug/L	4	4 19_120	5	22	
N-Nitrosodi-n-propylamine		50.0	43.9		ug/L	8	8 1-230	3	23	
N-Nitrosodiphenylamine		50.0	49.8		ug/L	10	0 54 - 125	5	15	
Pentachlorophenol		100	115		ug/L	11	5 14 - 176	2	2	
Phenanthrene		50.0	49.4		ug/L	g	9 54 - 120	2	16	
Phenol		50.0	18.8		ug/L		8 5 - 120		36	
Pyrene		50.0	50.2		ug/L	10			15	
	LCSD LCSD									
Surrogate %	Recoverv Qualifier	Limits								

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	110		52 - 151
2-Fluorobiphenyl	86		44 - 120

Eurofins TestAmerica, Buffalo

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Matrix: Water

Surrogate

Phenol-d5

Analyte

2-Fluorophenol

Nitrobenzene-d5

p-Terphenyl-d14 (Surr)

Matrix: Water

1,4-Dichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

2,4-Dinitrotoluene

2-Methylphenol

3-Methylphenol

4-Methylphenol

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Pentachlorophenol

Nitrobenzene

Pvridine

Analysis Batch: 538875

Analysis Batch: 538685

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

ND

ND

ND

Lab Sample ID: LCSD 480-538584/3-A **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA Prep Batch: 538584 LCSD LCSD %Recovery Qualifier Limits 17 - 120 46 85 15-314 8 - 424 33 107 22 - 125 8 Method: 8270D - Semivolatile Organic Compounds (GC/MS) Lab Sample ID: MB 480-538762/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 538762 MB MB MDL Unit Result Qualifier RL D Prepared Analyzed Dil Fac 06/30/20 15:20 07/01/20 11:29 ND 10 0.46 ug/L 1 ND 5.0 0.45 ug/L 06/30/20 15:20 07/01/20 11:29 1 ND 5.0 0.48 ug/L 06/30/20 15:20 07/01/20 11:29 1 ND 5.0 0.61 ug/L 06/30/20 15:20 07/01/20 11:29 1 ND 5.0 0.40 ug/L 06/30/20 15:20 07/01/20 11:29 1 ND 10 06/30/20 15:20 07/01/20 11:29 0.40 ug/L 1 ND 10 06/30/20 15:20 07/01/20 11:29 0.36 ug/L 1 ND 5.0 06/30/20 15:20 07/01/20 11:29 0.51 ug/L 1 06/30/20 15:20 07/01/20 11:29 ND 5.0 0.68 ug/L 1 ND 5.0 0.59 ug/L 06/30/20 15:20 07/01/20 11:29 1

,				0			
	MB	МВ					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	104		41 - 120		06/30/20 15:20	07/01/20 11:29	1
2-Fluorobiphenyl	106		48 - 120		06/30/20 15:20	07/01/20 11:29	1
2-Fluorophenol (Surr)	79		35 - 120		06/30/20 15:20	07/01/20 11:29	1
Nitrobenzene-d5 (Surr)	104		46 - 120		06/30/20 15:20	07/01/20 11:29	1
p-Terphenyl-d14 (Surr)	112		60 - 148		06/30/20 15:20	07/01/20 11:29	1
Phenol-d5 (Surr)	56		22 - 120		06/30/20 15:20	07/01/20 11:29	1

5.0

10

25

0.29 ug/L

2.2 ug/L

0.41 ug/L

Lab Sample ID: LCS 480-538762/2-A Matrix: Water Analysis Batch: 538875

Client Sample ID: Lab Control Sample Prep Type: Total/NA

06/30/20 15:20 07/01/20 11:29

06/30/20 15:20 07/01/20 11:29

06/30/20 15:20 07/01/20 11:29

Prep Batch: 538762

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
32.0	29.8		ug/L		93	51 - 120
32.0	35.7		ug/L		112	69 - 120
32.0	41.8	*	ug/L		131	65 - 126
32.0	39.3	*	ug/L		123	64 - 120
32.0	32.8		ug/L		102	39 - 120
32.0	31.2		ug/L		98	39 - 120
32.0	31.2		ug/L		97	29 - 131
32.0	35.5		ug/L		111	61 - 120
32.0	33.3		ug/L		104	35 - 120
	Added 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	Added Result 32.0 29.8 32.0 35.7 32.0 41.8 32.0 39.3 32.0 32.8 32.0 31.2 32.0 31.2 32.0 35.5	Added Result Qualifier 32.0 29.8 32.0 32.0 35.7 32.0 32.0 35.7 32.0 32.0 39.3 * 32.0 32.8 32.0 32.0 31.2 32.0 32.0 31.2 32.0 32.0 35.5 5	Added Result Qualifier Unit 32.0 29.8 ug/L ug/L 32.0 35.7 ug/L 32.0 35.7 ug/L 32.0 31.2 ug/L 32.0 31.2 ug/L 32.0 31.2 ug/L 32.0 35.5 ug/L	Added Result Qualifier Unit D 32.0 29.8 ug/L ug/L ug/L 32.0 35.7 ug/L ug/L 32.0 41.8 * ug/L 32.0 39.3 * ug/L 32.0 31.2 ug/L 32.0 31.2 ug/L 32.0 35.5 ug/L	Added Result Qualifier Unit D %Rec 32.0 29.8 ug/L 112 93 32.0 35.7 ug/L 112 32.0 41.8 * ug/L 131 32.0 39.3 * ug/L 123 32.0 39.3 * ug/L 102 32.0 32.8 ug/L 102 32.0 31.2 ug/L 98 32.0 31.2 ug/L 97 32.0 35.5 ug/L 111

Eurofins TestAmerica, Buffalo

Job ID: 480-171773-1

1

1

1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-538762/2-A Matrix: Water Analysis Batch: 538875				nt Sar	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 538762	
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Hexachloroethane	32.0	28.5		ug/L		89	43 - 120
Nitrobenzene	32.0	33.5		ug/L		105	53 - 123
Pentachlorophenol	64.0	64.2		ug/L		100	29 - 136
Pyridine	64.0	34.6		ug/L		54	10 - 120
LCS LCS							

	200	200	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	130	X	41 - 120
2-Fluorobiphenyl	105		48 - 120
2-Fluorophenol (Surr)	84		35 - 120
Nitrobenzene-d5 (Surr)	105		46 - 120
p-Terphenyl-d14 (Surr)	112		60 - 148
Phenol-d5 (Surr)	65		22 - 120

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 480-538962/1-A Matrix: Water Analysis Batch: 539133

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.060	0.038	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1221	ND		0.060	0.038	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1232	ND		0.060	0.038	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1242	ND		0.060	0.038	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1248	ND		0.060	0.038	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1254	ND		0.060	0.031	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1260	ND		0.060	0.031	ug/L		07/01/20 15:48	07/02/20 22:20	1
	MB	МВ							
	MB								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	47		36 - 121
Tetrachloro-m-xylene (Surr)	71		42 - 135

Lab Sample ID: LCS 480-538962/2-A Matrix: Water Analysis Batch: 539133

Analysis Batch: 539133			Spike	LCS	LCS				Prep Ba %Rec.	atch: 538962
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016			1.00	0.978		ug/L		98	69 - 123	
PCB-1260			1.00	0.905		ug/L		91	69 - 120	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							

Surrogate	%Recovery	Qualifier	LIMITS
DCB Decachlorobiphenyl	43		36 - 121
Tetrachloro-m-xylene (Surr)	72		42 - 135

1

1

Job ID: 480-171773-1

Client Sample ID: Method Blank

07/01/20 15:48 07/02/20 22:20

07/01/20 15:48 07/02/20 22:20

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 538962

Prep Type: Total/NA

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

5

8

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

Lab Sample ID: LCSD 480 Matrix: Water Analysis Batch: 539133	Spike	LCSD	LCSD	Client Sa	ample	ID: Lat	D Control S Prep Tyl Prep Ba %Rec.	tal/NA			
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016			1.00	0.953		ug/L		95	69 - 123	3	30
PCB-1260			1.00	0.899		ug/L		90	69 - 120	1	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
DCB Decachlorobiphenyl	44		36 - 121								
Tetrachloro-m-xylene (Surr)	65		42 - 135								

Method: 1631E - Mercury, Low Level (CVAFS)

Lab Sample ID: MB 240-4408 Matrix: Water Analysis Batch: 441110		МВ					Clie		ple ID: Method Prep Type: T Prep Batch:	otal/NA
Analyte	Result	Qualifier	RL	I	MDL Unit	D	Р	repared	Analyzed	Dil Fac
Mercury	ND		0.50		0.14 ng/L		07/0	1/20 11:00	07/02/20 10:32	1
Lab Sample ID: LCS 240-440 Matrix: Water Analysis Batch: 441110	889/2-A					Clien	t Sai		Lab Control S Prep Type: To Prep Batch:	otal/NA
·		S	pike	LCS	LCS				%Rec.	
Analyte		Ad	ded	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury			5.00	4.96		ng/L		99	77 - 123	

Lab Sample ID: 480-171773-1 MS	
Matrix: Water	
Analysis Batch: 1/1337	

Analysis Batch: 441337									Ргер ва	tcn: 440889
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	35.1		10.0	44.32		ng/L		92	71 - 125	

Lab Sample ID: 480-171773-1 MSD Matrix: Water						Cli	ent Sar	nple ID	: GEOBA Prep Ty		
Analysis Batch: 441337	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec.		
Analyte Mercury	Result 35.1	Qualifier	Added	Result 44.26	Qualifier	Unit ng/L	<u>D</u>	%Rec 91	Limits 71 - 125	RPD	Limit 24

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-5384 Matrix: Water Analysis Batch: 538638							Client Sample ID: Method Prep Type: T Prep Batch:		
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	ND	0.015	0.0056	mg/L		06/29/20 09:18	06/29/20 18:00	1	
Chromium	ND	0.0040	0.0010	mg/L		06/29/20 09:18	06/29/20 18:00	1	
Iron	ND	0.050	0.019	mg/L		06/29/20 09:18	06/29/20 18:00	1	
Lead	ND	0.010	0.0030	mg/L		06/29/20 09:18	06/29/20 18:00	1	

Eurofins TestAmerica, Buffalo

Client Sample ID: GEOBAG FILTRATE

Prep Type: Total/NA

LCS LCS

0.209

0.207

10.26

0.203

Result Qualifier

MDL Unit

0.0056 mg/L

0.0010 mg/L 0.019 mg/L

0.0030 mg/L

Unit

mg/L

mg/L

mg/L

mg/L

п

Spike

Added

0.200

0.200

0.200

MB MB

ND

ND

ND

ND

Result Qualifier

10.0

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Lab Sample ID: LCS 480-538451/2-A

Lab Sample ID: MB 480-538744/1-C

Matrix: Water

Matrix: Water

Arsenic, Dissolved

Iron, Dissolved

Lead, Dissolved

Chromium, Dissolved

Analyte

Arsenic

Iron

Lead

Analyte

Chromium

Analysis Batch: 538638

Analysis Batch: 539257

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Prep Type: Total/NA

Prep Batch: 538451

8 **Client Sample ID: Method Blank Prep Type: Dissolved** Prep Batch: 538920 Dil Fac

Fiepaieu	Analyzeu	Dirrac
 07/02/20 09:03	07/02/20 16:03	1
07/02/20 09:03	07/02/20 16:03	1
07/02/20 09:03	07/02/20 16:03	1
07/02/20 09:03	07/02/20 16:03	1

Client Sample ID: Lab Control Sample

Analyzod

Prep Type: Dissolved

Client Sample ID: Lab Control Sample

D %Rec

104

103

103

102

Pronarod

%Rec.

Limits

85 - 115

85 - 115

85 - 115 85 - 115

Lab Sample ID: LCS 480-538744/2-C Matrix: Water Analysis Batch: 539257

Analysis Batch: 539257	Spike	LCS	LCS				Prep Batch: 538920 %Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic, Dissolved	0.200	0.203		mg/L		101	85 - 115	
Chromium, Dissolved	0.200	0.201		mg/L		100	85 - 115	
Iron, Dissolved	10.0	10.00		mg/L		100	85 - 115	
Lead, Dissolved	0.200	0.197		mg/L		99	85 - 115	

RL

0.015

0.0040

0.050

0.010

Lab Sample ID: 480-171773-1 MS **Matrix: Water** Analysis Ratch: 539257

Analysis Balch: 539257	Sample	Sample	Spike	MS	MS				Ярер Ба %Rec.	atch: 536920
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic, Dissolved	ND		0.200	0.207		mg/L		104	70 - 130	
Chromium, Dissolved	ND		0.200	0.199		mg/L		99	70 - 130	
Iron, Dissolved	ND		10.0	9.92		mg/L		99	70 - 130	
Lead, Dissolved	ND		0.200	0.199		mg/L		99	70 - 130	

Lab Sample ID: 480-171773-1 MSD Matrix: Water Analysis Batch: 539257

Client Sample ID: GEOBAG FILTRATE Prep Type: Dissolved Prop Batch: 538920

Client Sample ID: GEOBAG FILTRATE
Prep Type: Dissolved

Pren Batch: 538920

Analysis Datch: 539257									Ргер Ба	atch: 53	0920	
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Arsenic, Dissolved	ND		0.200	0.212		mg/L		106	70 - 130	2	20	
Chromium, Dissolved	ND		0.200	0.199		mg/L		100	70 - 130	0	20	
Iron, Dissolved	ND		10.0	9.98		mg/L		100	70 - 130	1	20	
Lead, Dissolved	ND		0.200	0.200		mg/L		100	70 - 130	1	20	

Lab Sample ID: MB 480-539037/1-A Matrix: Water Analysis Batch: 539260

Analysis Batch: 539260								Prep Batch:	539037
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		07/02/20 10:00	07/02/20 19:21	1
Barium	ND	۸	0.0020	0.00070	mg/L		07/02/20 10:00	07/02/20 19:21	1
Cadmium	ND		0.0020	0.00050	mg/L		07/02/20 10:00	07/02/20 19:21	1
Chromium	ND		0.0040	0.0010	mg/L		07/02/20 10:00	07/02/20 19:21	1
Lead	ND		0.010	0.0030	mg/L		07/02/20 10:00	07/02/20 19:21	1
Selenium	ND		0.025	0.0087	mg/L		07/02/20 10:00	07/02/20 19:21	1
Silver	ND		0.0060	0.0017	mg/L		07/02/20 10:00	07/02/20 19:21	1

Lab Sample ID: LCS 480-539037/2-A Matrix: Water

Analysis Batch: 539260

Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	-	LCS				Prep Batch: 539037 %Rec.	11
Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.200	0.202		mg/L		101	80 - 120	12
0.200	0.211	۸	mg/L		106	80 - 120	
0.200	0.198		mg/L		99	80 - 120	13
0.200	0.200		mg/L		100	80 - 120	
0.200	0.195		mg/L		98	80 - 120	14
0.200	0.195		mg/L		97	80 - 120	
0.0500	0.0482		mg/L		96	80 - 120	15

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-538722 Matrix: Water	/ 1-A							С	lie		ole ID: Metho Prep Type: T	
Analysis Batch: 538883											Prep Batch:	538722
	MB	MB										
Analyte	Result	Qualifier	RL	. I	MDL (Unit		D	Pr	repared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00	0012 r	mg/L		_ 00	6/30	0/20 12:40	06/30/20 18:51	1
 Lab Sample ID: LCS 480-53872	2/2-A						Clie	ent S	San	nple ID:	Lab Control	Sample
Lab Sample ID: LCS 480-53872 Matrix: Water	2/2-A						Clie	ent S	San		Lab Control S Prep Type: T	
Matrix: Water	2/2-A						Clie	ent S	San		Prep Type: T	otal/NA
•	2/2-A		Spike	LCS	LCS		Clie	ent S	San			otal/NA
Matrix: Water	2/2-A		Spike Added	LCS Result		ifier	Clie				Prep Type: T Prep Batch:	otal/NA

Method: 1664B - HEM and SGT-HEM

Lab Sample ID: MB 480-538587/′ Matrix: Water Analysis Batch: 538602		мв						le ID: Methoo Prep Type: To Prep Batch:	otal/NA
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Oil & Grease	ND		5.0	1.4	mg/L		06/29/20 16:43	06/30/20 19:40	1

7/7/2020

Prep Type: Total/NA

Client Sample ID: Method Blank

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc. Job ID: 480-171773-1

5

8

Method: 1664B - HEM and SGT-HEM (Continued)

Lab Sample ID: LCS 480-538587/2-A Matrix: Water Analysis Batch: 538602	0 11			Clie	ent Sar	nple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 538587
	Spike		LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Oil & Grease	40.0	34.00		mg/L		85	78 - 114

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-538674/4 Matrix: Water									C	Clie	nt Sam	ple ID: Metho Prep Type: 1	
Analysis Batch: 538674													
-	MB	MB											
Analyte	Result	Qualifier		RL	I	MDL	Unit		D	Pr	repared	Analyzed	Dil Fac
Fluoride	ND			0.050	0	.026	mg/L					06/30/20 13:22	2 1
Lab Sample ID: LCS 480-538674/3	5							C	lient \$	San	nple ID:	Lab Control	Sample
Matrix: Water												Prep Type: 1	Fotal/NA
Analysis Batch: 538674													
			Spike		LCS	LCS	;					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Fluoride			5.00		4.63			mg/L		_	93	90 - 110	
Lab Sample ID: 480-171773-2 MS							Cl	ient S	ampl	e IC	D: FILTE	ER PRESS FI	LTRATE
Matrix: Water												Prep Type: 1	Total/NA
Analysis Batch: 538674													
Sar	nple Sa	mple	Spike		MS	MS						%Rec.	
Analyte Re	sult Qu	alifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Fluoride	0.17		10.0		9.50			mg/L		_	93	82 - 120	
lethod: 335.4 - Cyanide, Tot	al												

Lab Sample ID: MB 480-538713/1-/ Matrix: Water Analysis Batch: 538730									CI	ient		ole ID: Metho Prep Type: Prep Batch	Total/NA
Analyte		MB Qualifier		RL	1	MDL	Unit		D	Prep	bared	Analyzed	Dil Fac
Cyanide, Total	ND			0.010	0.0	0050	mg/L		_ 06	/30/2	20 11:22	06/30/20 12:1	8 1
Lab Sample ID: LCS 480-538713/2-	A							Clie	ent Sa	amp	ole ID:	Lab Contro	l Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 538730												Prep Batch	: 538713
			Spike		LCS	LCS	;					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit	C) %	Rec	Limits	
Cyanide, Total			0.400		0.423			mg/L			106	90 - 110	
Lab Sample ID: LCS 480-538713/3-	A							Clie	ent Sa	amp	ole ID:	Lab Contro	Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 538730												Prep Batch	: 538713
-			Spike		LCS	LCS	;					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit	C) %	Rec	Limits	
Cyanide, Total			0.250		0.255			mg/L			102	90 - 110	

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 410.4 - COD

Job ID: 480-171773-1

Lab Sample ID: MB 480-538470/52 Matrix: Water										Clie	nt Sam	ple ID: Metho Prep Type: 1	
Analysis Batch: 538470													
-		MB											
Analyte		Qualifier		RL		MDL			D	Pr	epared	Analyzed	Dil Fa
Chemical Oxygen Demand	ND			10.0		5.0	mg/L					06/28/20 06:29	
Lab Sample ID: LCS 480-538470/53								CI	ient	San	nple ID:	Lab Control	Sample
Matrix: Water												Prep Type: 1	otal/N
Analysis Batch: 538470													
			Spike		LCS	LCS	i					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Chemical Oxygen Demand			25.0		25.60			mg/L			102	90 - 110	
Lab Sample ID: MB 480-539130/4										Clie	nt Sam	ple ID: Metho	d Blan
Matrix: Water												Prep Type: 1	
Analysis Batch: 539130													
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed	Dil Fa
Chemical Oxygen Demand	ND			10.0		5.0	mg/L					07/01/20 17:59	
Lab Sample ID: LCS 480-539130/5								CI	ient	San	n <mark>ple ID</mark> :	Lab Control	
Matrix: Water												Prep Type: 1	otal/N
Analysis Batch: 539130			Spike		1.05	LCS						%Rec.	
							,					/011000.	
Analyte			•			Оца	lifier	Unit		п	%Rec	l imits	
Analyte Chemical Oxygen Demand			Added 25.0		Result 24.36	Qua	lifier	Unit mg/L		<u>D</u>	%Rec 97	Limits 90 - 110	
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44	al Re	covera	Added 25.0		Result	Qua	lifier			·	97	90 - 110 ple ID: Metho	
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water	al Re	covera	Added 25.0		Result	Qua	lifier			·	97	90 - 110	
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water		COVERA	Added 25.0		Result	Qua	lifier			·	97	90 - 110 ple ID: Metho	
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178	МВ		Added 25.0	 	Result 24.36	Qua			D	Clie	97	90 - 110 ple ID: Metho	otal/N
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte	МВ	МВ	Added 25.0	RL 0.010	Result 24.36	MDL				Clie	97	90 - 110 ple ID: Metho Prep Type: 1	F <mark>otal/N</mark> Dil Fa
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45	MB Result ND	МВ	Added 25.0		Result 24.36	MDL	Unit	mg/L	<u>D</u>	Clie Pr	97 nt Sam epared	90 - 110 ple ID: Metho Prep Type: 7 Analyzed 07/02/20 14:39 : Lab Control	Dil Fa
Chemical Oxygen Demand Aethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water	MB Result ND	МВ	Added 25.0		Result 24.36	MDL	Unit	mg/L	<u>D</u>	Clie Pr	97 nt Sam epared	90 - 110 ple ID: Metho Prep Type: 7 Analyzed 07/02/20 14:39	Dil Fa
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45	MB Result ND	МВ	Added 25.0		Result 24.36	MDL	Unit mg/L	mg/L	<u>D</u>	Clie Pr	97 nt Sam epared	90 - 110 ple ID: Metho Prep Type: 7 Analyzed 07/02/20 14:39 : Lab Control	Dil Fa
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178 Analysis Batch: 539178	MB Result ND	МВ	Added 25.0 ble Spike Added		Result 24.36	MDL 0035	Unit mg/L	mg/L	<u>D</u>	Clie Pr San	97 nt Sam epared nple ID: %Rec	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:36 : Lab Control Prep Type: 1 %Rec. Limits	Dil Fa
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178	MB Result ND	МВ	Added 25.0 ble		Result 24.36	MDL 0035	Unit mg/L	mg/L	<u>D</u>	Clie Pr San	97 nt Sam epared nple ID:	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:38 : Lab Control Prep Type: 1 %Rec.	Dil Fa
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178 Analysis Batch: 539178 Analyte Phenolics, Total Recoverable	MB Result ND	MB Qualifier	Added 25.0 ble Spike Added 0.100	0.010	Result 24.36	MDL 0035	Unit mg/L	CI Unit	<u>D</u>	Clie Pr San	97 nt Sam epared nple ID: %Rec	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:36 : Lab Control Prep Type: 1 %Rec. Limits	Dil Fa
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Method: SM 2540C - Solids, Total Lab Sample ID: MB 480-538756/1	MB Result ND	MB Qualifier	Added 25.0 ble Spike Added 0.100	0.010	Result 24.36	MDL 0035	Unit mg/L	CI Unit	D ient	Clie Pr San	97 nt Sam epared nple ID: <u>%Rec</u> 101	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:36 : Lab Control Prep Type: 1 %Rec. Limits	Dil Fa Dil Fa Sampl Fotal/N
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Method: SM 2540C - Solids, To Lab Sample ID: MB 480-538756/1 Matrix: Water	MB Result ND	MB Qualifier	Added 25.0 ble Spike Added 0.100	0.010	Result 24.36	MDL 0035	Unit mg/L	CI Unit	D ient	Clie Pr San	97 nt Sam epared nple ID: <u>%Rec</u> 101	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:39 : Lab Control Prep Type: 1 %Rec. Limits 90 - 110 ple ID: Metho	Dil Fa Dil Fa Sampl Fotal/N/
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178 Analysis Batch: 539178	MB Result ND	MB Qualifier	Added 25.0 ble Spike Added 0.100	0.010	Result 24.36	MDL 0035 Qua	Unit mg/L	CI Unit	D ient	Clie Pr San D Clie	97 nt Sam epared nple ID: <u>%Rec</u> 101	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:39 : Lab Control Prep Type: 1 %Rec. Limits 90 - 110 ple ID: Metho	Dil Fa Dil Fa Sample Total/N/

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc. Job ID: 480-171773-1

Dil Fac

Dil Fac

RPD

Limit

15

1

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued) **Client Sample ID: Lab Control Sample** Lab Sample ID: LCS 480-538756/2 Matrix: Water Prep Type: Total/NA Analysis Batch: 538756 Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit D 85 - 115 **Total Dissolved Solids** 504 446.0 89 mg/L Method: SM 2540D - Solids, Total Suspended (TSS) Lab Sample ID: MB 480-538343/1 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 538343 MB MB **Result Qualifier** RL **RL Unit** Prepared Analyzed Analyte D 1.0 **Total Suspended Solids** ND 1.0 mg/L 06/27/20 11:05 Lab Sample ID: LCS 480-538343/2 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 538343 Spike LCS LCS %Rec. Analvte Added Result Qualifier Unit D %Rec Limits **Total Suspended Solids** 341 330.8 mg/L 97 88 - 110 Method: SM 3500 CR D - Chromium, Hexavalent Lab Sample ID: MB 480-538385/3 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 538385 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed 0.010 06/27/20 11:02 Chromium, hexavalent ND 0.0050 mg/L Lab Sample ID: LCS 480-538385/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 538385 Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits D Chromium, hexavalent 0.0500 85 - 115 0.0501 mg/L 100 Lab Sample ID: 480-171773-1 DU **Client Sample ID: GEOBAG FILTRATE Matrix: Water** Prep Type: Total/NA Analysis Batch: 538385 Sample Sample DU DU **Result Qualifier** Analyte Result Qualifier Unit D RPD ND H Chromium, hexavalent ND mg/L NC Method: SM 3500 FE D - Iron, Ferrous and Ferric Lab Sample ID: MB 480-538395/3 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 538395 MB MB RL MDL Unit Analyte **Result Qualifier** D Prepared Analyzed Ferrous Iron ND 0.10 0.075 mg/L 06/27/20 15:55

Eurofins TestAmerica, Buffalo

Dil Fac

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc. Job ID: 480-171773-1

Method: SM 3500 FE D - Iron, Ferrous and Ferric (Continued)

Lab Sample ID: LCS 480-538	395/4					Clie	nt Sai	nple ID	: Lab Contr	
Matrix: Water									Prep Type	: Total/N
Analysis Batch: 538395										
			Spike		LCS		_		%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Ferrous Iron			2.00	2.01		mg/L		101	90 - 110	
Lab Sample ID: 480-171773-2 Matrix: Water	2 MS				CI	ient San	n <mark>ple I</mark>	D: FILT	ER PRESS Prep Type	
Analysis Batch: 538395										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ferrous Iron	ND	HF	2.00	1.91		mg/L		96	70 - 130	
Lab Sample ID: 480-171773-1 Matrix: Water	DU					Clier	nt Sar	nple ID	: GEOBAG Prep Type	
Analysis Batch: 538395										
	Sample	Sample		DU	DU					RF
Analyte	-	Qualifier		Result	Qualifier	Unit	D			RPD Lin
Ferrous Iron	ND	HF		ND		mg/L				NC
Lab Sample ID: 480-171773-2 Matrix: Water	2 DU				CI	ient San	n <mark>ple I</mark>	D: FILT	ER PRESS Prep Type	
Analysis Batch: 538395										
-	Sample	Sample		DU	DU					RF
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD Lin
Ferrous Iron	ND	HF		ND		mg/L				NC
Anthody CM 4500 H+ D	nH									
iethod: Sivi 4500 H+ B - [
Lab Sample ID: LCS 480-538						Clie	nt Sai	nple ID	: Lab Contr Prep Type	
Lab Sample ID: LCS 480-538 Matrix: Water						Clie	nt Sai	nple ID	: Lab Contr Prep Type	
Lab Sample ID: LCS 480-538 Matrix: Water			Spike	LCS	LCS	Clie	nt Sai	nple ID		
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753			Spike Added	_	LCS Qualifier	Clie	nt Sai D	nple ID %Rec	Prep Type	
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte			-	_				·	Prep Type %Rec.	
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water	753/1		Added	Result		Unit SU	D	%Rec	Prep Type %Rec. Limits	: Total/Ñ
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water	753/1		Added 7.00	Result 7.0	Qualifier	Unit SU	D	%Rec	Prep Type %Rec. Limits 99-101 : Lab Contr Prep Type	: Total/Ñ
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753	753/1		Added 7.00 Spike	Result 7.0 LCS	Qualifier	Unit SU Cliet	 nt Sai	%Rec 100	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec.	: Total/Ñ
Aethod: SM 4500 H+ B - p Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte	753/1		Added 7.00 Spike Added	Result 7.0 LCS Result	Qualifier	Unit SU Cliet Unit	D	%Rec 100 mple ID %Rec	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec. Limits	: Total/Ñ
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte	753/1		Added 7.00 Spike	Result 7.0 LCS	Qualifier	Unit SU Cliet	 nt Sai	%Rec 100	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec.	: Total/Ñ
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH	753/1		Added 7.00 Spike Added	Result 7.0 LCS Result	Qualifier	Unit SU Cliet Unit	 nt Sai	%Rec 100 mple ID %Rec	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec. Limits	: Total/Ñ
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Method: SM 5210B - BOD Lab Sample ID: USB 480-538 Matrix: Water	753/1 753/23), 5-Day		Added 7.00 Spike Added	Result 7.0 LCS Result	Qualifier	Unit SU Cliet Unit	D	%Rec 100 mple ID %Rec 100	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec. Limits	: Total/N ol Samp : Total/N
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Method: SM 5210B - BOD Lab Sample ID: USB 480-538 Matrix: Water	753/1 753/23 0, 5-Day 375/1		Added 7.00 Spike Added	Result 7.0 LCS Result	Qualifier	Unit SU Cliet Unit	D	%Rec 100 mple ID %Rec 100	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec. Limits 99 - 101	: Total/N ol Samp : Total/N
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753	753/1 753/23 0, 5-Day 375/1	USB USB	Added 7.00 Spike Added	Result 7.0 LCS Result 7.0	Qualifier	Unit SU Clies Unit SU	D nt Sai D Clie	%Rec 100 mple ID %Rec 100	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec. Limits 99 - 101	: Total/N ol Samp : Total/N hod Blar : Total/N

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc. Job ID: 480-171773-1

Method: SM 5210B - BOD, 5-Day (Continued)

Lab Sample ID: LCS 480-538 Matrix: Water	8375/2					Clie	nt Samp	le ID:	: Lab Control S Prep Type: To	
Analysis Batch: 538375										
			Spike	LC	S LCS				%Rec.	
Analyte			Added	Resu	ult Qualifier	Unit	D %	Rec	Limits	
Biochemical Oxygen Demand			198	188	.3	mg/L		95	85 - 115	
- - - Lob Somple ID: USB 490-52	0276/4						Client	6	nia ID: Mathad	Diank
Lab Sample ID: USB 480-538	8376/1						Client	Sam	ple ID: Method	
Matrix: Water									Prep Type: To	otal/NA
Analysis Batch: 538376		JSB USB								
Analyte		sult Quali	fior	RL	MDL Unit	r	D Prep	arod	Analyzed	Dil Fac
Carbonaceous Biochemical Oxygen				2.0	2.0 mg/L			areu	06/27/20 06:33	
Demand				2.0	2.0 mg/L				00/21/20 00.00	
Lab Sample ID: LCS 480-538	8376/2					Clie	nt Samp	le ID:	: Lab Control S	Sample
Matrix: Water									Prep Type: To	otal/NA
Analysis Batch: 538376										
-			Spike	LC	S LCS				%Rec.	
Analyte			Added	Resu	ult Qualifier	Unit	D %	Rec	Limits	
Carbonaceous Biochemical			198	183	.0	mg/L		92	85 - 115	
Oxygen Demand										
- Lab Sampla ID: 490 474772	4 DU					Clier	at Sama			
Lab Sample ID: 480-171773- Matrix: Water						Cilei	n Samp	ie iD.	GEOBAG FILT Prep Type: To	
									Fiep Type. It	
Analysis Batch: 538376	Sample	Sample		г	U DU					RPD
	Campio	oumpio		-						
Analyte	Result	Qualifier		Resi	ult Qualifier	Unit	D		RPD	limi [.]
Analyte		Qualifier			ult Qualifier	Unit ma/l	D		RPD	
Analyte Carbonaceous Biochemical Oxygen Demand	Result 16.5				ult Qualifier 26 F3	Unit mg/L	<u>D</u>		RPD 53	
Carbonaceous Biochemical Oxygen Demand	16.5						D			
Carbonaceous Biochemical Oxygen Demand	16.5 C							Sam		3 20
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC	16.5 C							Sam	53	Blank
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water	16.5 C							Sam	53 ple ID: Method	Blank
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-538	16.5 C							Sam	53 ple ID: Method	Blank
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water	16.5 C 906/4	b			MDL Unit	mg/L			53 ple ID: Method	Blank
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906	16.5 C 906/4	MB MB	fier	28.	26 F3	mg/L	Client		ple ID: Method Prep Type: To	Blank Dtal/NA
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon	16.5 2 906/4 Re	MB MB sult Quali		28.	MDL Unit	mg/L	Client	ared	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48	Blank Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOO Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-538	16.5 2 906/4 Re	MB MB sult Quali		28.	MDL Unit	mg/L	Client	ared	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOO Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-538 Matrix: Water	16.5 2 906/4 Re	MB MB sult Quali	fier	28.	MDL Unit	mg/L	Client	ared	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOO Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-538	16.5 2 906/4 Re	MB MB sult Quali		28. RL 1.0	MDL Unit 0.43 mg/L	mg/L	Client	ared	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S Prep Type: To	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906	16.5 2 906/4 Re	MB MB sult Quali	Spike	28.1 	MDL Unit 0.43 mg/L	mg/L	Client	ared le ID:	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S Prep Type: To %Rec.	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906 Analyte	16.5 2 906/4 Re	MB MB sult Quali	Spike Added	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L Clier Unit	Client D Prep nt Samp D %	ared le ID: Rec	53 ple ID: Method Prep Type: To 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906	16.5 2 906/4 Re	MB MB sult Quali	Spike	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L	Client D Prep nt Samp D %	ared le ID:	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S Prep Type: To %Rec.	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon	16.5 906/4 Re 8906/5	MB MB sult Quali	Spike Added	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L Clier Unit	Client	ared le ID: Rec 102	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits 90 - 110	Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: MB 480-5399	16.5 906/4 Re 8906/5	MB MB sult Quali	Spike Added	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L Clier Unit	Client	ared le ID: Rec 102	53 ple ID: Method Prep Type: To 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits 90 - 110 ple ID: Method	Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOO Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: MB 480-5399 Matrix: Water	16.5 906/4 Re 8906/5	MB MB sult Quali	Spike Added	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L Clier Unit	Client	ared le ID: Rec 102	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits 90 - 110	Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: MB 480-5399	16.5 906/4 Re 8906/5	MB MB sult Quali	Spike Added	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L Clier Unit	Client	ared le ID: Rec 102	53 ple ID: Method Prep Type: To 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits 90 - 110 ple ID: Method	Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOO Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: MB 480-5399 Matrix: Water	16.5 2 906/4 Re 8906/5	MB MB sult Quali	Spike Added 60.0	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	Clier Unit mg/L	Client	ared le ID: Rec 102 Sam	53 ple ID: Method Prep Type: To 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits 90 - 110 ple ID: Method	Dil Fac

Method: SM 5310C - TOC (Continued)

Lab Sample ID: LCS 480-539191/5 Matrix: Water Analysis Batch: 539191	Client Sample ID: Lab Control S Prep Type: T					: Lab Control Sample Prep Type: Total/NA	
Analysis Baton: 000101	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Organic Carbon	60.0	61.13		mg/L		102	90 - 110

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Matrix

Water

Water

Water

Water

Matrix

Water

Water Water

Water

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID

Method Blank

GEOBAG FILTRATE

Lab Control Sample

Client Sample ID

Method Blank

GEOBAG FILTRATE

Lab Control Sample

Client Sample ID

Method Blank

GEOBAG FILTRATE

Lab Control Sample

FILTER PRESS FILTRATE

FILTER PRESS FILTRATE

FILTER PRESS FILTRATE

GC/MS VOA

Lab Sample ID

480-171773-1

480-171773-2

MB 480-538351/7

LCS 480-538351/5

Lab Sample ID

480-171773-1

480-171773-2

MB 480-538566/7

LCS 480-538566/5

GC/MS Semi VOA

Prep Batch: 538584

Lab Sample ID

480-171773-1

480-171773-2

MB 480-538584/1-A

LCS 480-538584/2-A

Analysis Batch: 538351

Analysis Batch: 538566

Prep Batch

Prep Batch

Prep Batch

Method

624.1

624.1

624.1

624.1

Method

8260C

8260C

8260C

8260C

Method

625 625

625

625

9

LCSD 480-538584/3-A	Lab Control Sample Dup	Total/NA	Water	625	
Analysis Batch: 5386	85				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	625.1	538584
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	625.1	538584
MB 480-538584/1-A	Method Blank	Total/NA	Water	625.1	538584
LCS 480-538584/2-A	Lab Control Sample	Total/NA	Water	625.1	538584
LCSD 480-538584/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	538584

Prep Batch: 538762

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	3510C	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	3510C	
MB 480-538762/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-538762/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 538875

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	8270D	538762
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	8270D	538762
MB 480-538762/1-A	Method Blank	Total/NA	Water	8270D	538762
LCS 480-538762/2-A	Lab Control Sample	Total/NA	Water	8270D	538762

GC Semi VOA

Prep Batch: 538962

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480	-171773-1	GEOBAG FILTRATE	Total/NA	Water	3510C	
480	-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	3510C	
MB	480-538962/1-A	Method Blank	Total/NA	Water	3510C	
LCS	S 480-538962/2-A	Lab Control Sample	Total/NA	Water	3510C	

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

GC Semi VOA (Continued)

Prep Batch: 538962 (Continued)

Lab Sample ID LCSD 480-538962/3-A	Client Sample ID Lab Control Sample Dup	Prep Type Total/NA	Water	Method 3510C	Prep Batch
– Analysis Batch: 5391	33				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	608.3	538962
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	608.3	538962
MB 480-538962/1-A	Method Blank	Total/NA	Water	608.3	538962
LCS 480-538962/2-A	Lab Control Sample	Total/NA	Water	608.3	538962
LCSD 480-538962/3-A	Lab Control Sample Dup	Total/NA	Water	608.3	538962

Metals

Prep Batch: 440889

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	1631E	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	1631E	
MB 240-440889/1-A	Method Blank	Total/NA	Water	1631E	
LCS 240-440889/2-A	Lab Control Sample	Total/NA	Water	1631E	
480-171773-1 MS	GEOBAG FILTRATE	Total/NA	Water	1631E	
480-171773-1 MSD	GEOBAG FILTRATE	Total/NA	Water	1631E	

Analysis Batch: 441110

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 240-440889/1-A	Method Blank	Total/NA	Water	1631E	440889
LCS 240-440889/2-A	Lab Control Sample	Total/NA	Water	1631E	440889

Analysis Batch: 441337

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	1631E	440889
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	1631E	440889
480-171773-1 MS	GEOBAG FILTRATE	Total/NA	Water	1631E	440889
480-171773-1 MSD	GEOBAG FILTRATE	Total/NA	Water	1631E	440889

Prep Batch: 538451

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	200.7	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	200.7	
MB 480-538451/1-A	Method Blank	Total/NA	Water	200.7	
LCS 480-538451/2-A	Lab Control Sample	Total/NA	Water	200.7	

Analysis Batch: 538638

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	200.7 Rev 4.4	538451
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	200.7 Rev 4.4	538451
MB 480-538451/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	538451
LCS 480-538451/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	538451
Prep Batch: 538722					

Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch 480-171773-1 **GEOBAG FILTRATE** Total/NA Water 7470A 480-171773-2 FILTER PRESS FILTRATE Total/NA 7470A Water

Job ID: 480-171773-1

9

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Job ID: 480-171773-1

7 8 9

13 14

Metals (Continued)

Prep Batch: 538722 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-538722/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-538722/2-A	Lab Control Sample	Total/NA	Water	7470A	
iltration Batch: 538	744				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Dissolved	Water	FILTRATION	
480-171773-2	FILTER PRESS FILTRATE	Dissolved	Water	FILTRATION	
MB 480-538744/1-C	Method Blank	Dissolved	Water	FILTRATION	
LCS 480-538744/2-C	Lab Control Sample	Dissolved	Water	FILTRATION	
480-171773-1 MS	GEOBAG FILTRATE	Dissolved	Water	FILTRATION	
480-171773-1 MSD	GEOBAG FILTRATE	Dissolved	Water	FILTRATION	
nalysis Batch: 538	883				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	7470A	538722
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	7470A	538722
MB 480-538722/1-A	Method Blank	Total/NA	Water	7470A	53872
LCS 480-538722/2-A	Lab Control Sample	Total/NA	Water	7470A	53872
rep Batch: 538920					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-171773-1	GEOBAG FILTRATE	Dissolved	Water	200.7	53874
480-171773-2	FILTER PRESS FILTRATE	Dissolved	Water	200.7	53874
MB 480-538744/1-C	Method Blank	Dissolved	Water	200.7	538744
LCS 480-538744/2-C	Lab Control Sample	Dissolved	Water	200.7	538744
480-171773-1 MS	GEOBAG FILTRATE	Dissolved	Water	200.7	53874
480-171773-1 MSD	GEOBAG FILTRATE	Dissolved	Water	200.7	53874
rep Batch: 539037					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	3005A	

Analysis Batch: 539257

Method Blank

Lab Control Sample

MB 480-539037/1-A

LCS 480-539037/2-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Dissolved	Water	200.7 Rev 4.4	538920
480-171773-2	FILTER PRESS FILTRATE	Dissolved	Water	200.7 Rev 4.4	538920
MB 480-538744/1-C	Method Blank	Dissolved	Water	200.7 Rev 4.4	538920
LCS 480-538744/2-C	Lab Control Sample	Dissolved	Water	200.7 Rev 4.4	538920
480-171773-1 MS	GEOBAG FILTRATE	Dissolved	Water	200.7 Rev 4.4	538920
480-171773-1 MSD	GEOBAG FILTRATE	Dissolved	Water	200.7 Rev 4.4	538920

Total/NA

Total/NA

Water

Water

3005A

3005A

Analysis Batch: 539260

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	6010C	539037
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	6010C	539037
MB 480-539037/1-A	Method Blank	Total/NA	Water	6010C	539037
LCS 480-539037/2-A	Lab Control Sample	Total/NA	Water	6010C	539037

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

General Chemistry

Analysis Batch: 538343

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 2540D	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 2540D	
MB 480-538343/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-538343/2	Lab Control Sample	Total/NA	Water	SM 2540D	
analysis Batch: 538	3375				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 5210B	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 5210B	
USB 480-538375/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-538375/2	Lab Control Sample	Total/NA	Water	SM 5210B	
م. Analysis Batch: 538	3376				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 5210B	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 5210B	
USB 480-538376/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-538376/2	Lab Control Sample	Total/NA	Water	SM 5210B	
480-171773-1 DU	GEOBAG FILTRATE	Total/NA	Water	SM 5210B	
nalysis Batch: 538	3385				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 3500 CR D	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 3500 CR D	
MB 480-538385/3	Method Blank	Total/NA	Water	SM 3500 CR D	
LCS 480-538385/4	Lab Control Sample	Total/NA	Water	SM 3500 CR D	
480-171773-2 MS	FILTER PRESS FILTRATE	Total/NA	Water	SM 3500 CR D	
480-171773-1 DU	GEOBAG FILTRATE	Total/NA	Water	SM 3500 CR D	
nalysis Batch: 538	3395				
Lab Sample ID	Client Sample ID	Pren Type	Matrix	Method	Prep Batc

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 3500 FE D	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 3500 FE D	
MB 480-538395/3	Method Blank	Total/NA	Water	SM 3500 FE D	
LCS 480-538395/4	Lab Control Sample	Total/NA	Water	SM 3500 FE D	
480-171773-2 MS	FILTER PRESS FILTRATE	Total/NA	Water	SM 3500 FE D	
480-171773-1 DU	GEOBAG FILTRATE	Total/NA	Water	SM 3500 FE D	
480-171773-2 DU	FILTER PRESS FILTRATE	Total/NA	Water	SM 3500 FE D	

Analysis Batch: 538470

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	410.4	
MB 480-538470/52	Method Blank	Total/NA	Water	410.4	
LCS 480-538470/53	Lab Control Sample	Total/NA	Water	410.4	

Prep Batch: 538587

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-1	171773-1	GEOBAG FILTRATE	Total/NA	Water	1664B	
480-1	171773-2	FILTER PRESS FILTRATE	Total/NA	Water	1664B	
MB 4	80-538587/1-A	Method Blank	Total/NA	Water	1664B	
LCS	480-538587/2-A	Lab Control Sample	Total/NA	Water	1664B	

Job ID: 480-171773-1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

General Chemistry

Analysis Batch: 538602

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	1664B	538587
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	1664B	538587
MB 480-538587/1-A	Method Blank	Total/NA	Water	1664B	538587
LCS 480-538587/2-A	Lab Control Sample	Total/NA	Water	1664B	538587

Analysis Batch: 538674

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	300.0	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	300.0	
MB 480-538674/4	Method Blank	Total/NA	Water	300.0	
LCS 480-538674/3	Lab Control Sample	Total/NA	Water	300.0	
480-171773-2 MS	FILTER PRESS FILTRATE	Total/NA	Water	300.0	

Prep Batch: 538713

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	Distill/CN	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	Distill/CN	
MB 480-538713/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 480-538713/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
LCS 480-538713/3-A	Lab Control Sample	Total/NA	Water	Distill/CN	

Analysis Batch: 538730

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	335.4	538713
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	335.4	538713
MB 480-538713/1-A	Method Blank	Total/NA	Water	335.4	538713
LCS 480-538713/2-A	Lab Control Sample	Total/NA	Water	335.4	538713
LCS 480-538713/3-A	Lab Control Sample	Total/NA	Water	335.4	538713

Analysis Batch: 538753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 4500 H+ B	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 4500 H+ B	
LCS 480-538753/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	
LCS 480-538753/23	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 538756

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 2540C	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 2540C	
MB 480-538756/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-538756/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 538906

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 5310C	
MB 480-538906/4	Method Blank	Total/NA	Water	SM 5310C	
LCS 480-538906/5	Lab Control Sample	Total/NA	Water	SM 5310C	

9

Job ID: 480-171773-1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

General Chemistry

Analysis Batch: 539130

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	410.4	
MB 480-539130/4	Method Blank	Total/NA	Water	410.4	
LCS 480-539130/5	Lab Control Sample	Total/NA	Water	410.4	

Analysis Batch: 539178

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	420.4	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	420.4	
MB 480-539178/44	Method Blank	Total/NA	Water	420.4	
LCS 480-539178/45	Lab Control Sample	Total/NA	Water	420.4	

Analysis Batch: 539191

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 5310C	
MB 480-539191/4	Method Blank	Total/NA	Water	SM 5310C	
LCS 480-539191/5	Lab Control Sample	Total/NA	Water	SM 5310C	

Job ID: 480-171773-1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

Lab Sample ID: 480-171773-1

Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		10	538351	06/27/20 20:32	LCH	TAL BUF
Total/NA	Analysis	8260C		4	538566	06/29/20 22:11	OMI	TAL BUF
Total/NA	Prep	625			538584	06/29/20 16:29		TAL BUF
Total/NA	Analysis	625.1		20	538685	06/30/20 13:15	JMM	TAL BUF
Total/NA	Prep	3510C				06/30/20 15:20		TAL BUF
Total/NA	Analysis	8270D		1		07/01/20 12:27		TAL BUF
Total/NA	Prep	3510C				07/01/20 15:48		TAL BUF
Total/NA	Analysis	608.3		1		07/03/20 03:05		TAL BUF
Total/NA	Prep	1631E		-		07/01/20 11:00		TAL CAN
Total/NA	Analysis	1631E		2		07/06/20 11:45		TAL CAN
Dissolved	Filtration	FILTRATION				06/30/20 14:12		TAL BUF
Dissolved	Prep	200.7 200.7 Dov: 4.4		1		07/02/20 09:03		TAL BUF
Dissolved	Analysis	200.7 Rev 4.4		I		07/02/20 16:22		TAL BUF
Total/NA	Prep	200.7		4		06/29/20 09:18		TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1		06/29/20 18:23		TAL BUF
Total/NA Total/NA	Prep	3005A 6010C		1		07/02/20 10:00 07/02/20 20:31		TAL BUF TAL BUF
	Analysis			1				
Total/NA Total/NA	Prep Analysis	7470A 7470A		1		06/30/20 12:40 06/30/20 18:54		TAL BUF TAL BUF
Total/NA		1664B				06/29/20 16:43		TAL BUF
Total/NA	Prep Analysis	1664B		1		06/30/20 19:40		TAL BUF
Total/NA	Analysis	300.0		1		06/30/20 17:37		TAL BUF
Total/NA	Prep	Distill/CN				06/30/20 11:22		TAL BUF
Total/NA	Analysis	335.4		1		06/30/20 12:45		TAL BUF
Total/NA	Analysis	410.4		1		06/28/20 06:50		TAL BUF
Total/NA	Analysis	420.4		1		07/02/20 15:45		TAL BUF
	•					06/30/20 14:57		
Total/NA	Analysis	SM 2540C		1				TAL BUF
Total/NA	Analysis	SM 2540D		1		06/27/20 11:05		TAL BUF
Total/NA	Analysis	SM 3500 CR D		1		06/27/20 11:02		TAL BUF
Total/NA	Analysis	SM 3500 FE D		1	538395	06/27/20 15:55	CSS	TAL BUF
Total/NA	Analysis	SM 4500 H+ B		1	538753	06/30/20 14:00	BEF	TAL BUF
Total/NA	Analysis	SM 5210B		1	538375	06/27/20 06:33	EY	TAL BUF
Total/NA	Analysis	SM 5210B		1	538376	06/27/20 06:33	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	538906	06/30/20 21:37	CLA	TAL BUF

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Batch Batch Dilution Batch Prepared Prep Type Туре Method Factor Number or Analyzed Analyst Run Lab Total/NA Analysis 624.1 10 538351 06/27/20 20:57 LCH TAL BUF Total/NA Analysis 8260C 5 538566 06/29/20 22:34 OMI TAL BUF

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-171773-2

Matrix: Water

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Lab Sample ID: 480-171773-2

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	625			538584	06/29/20 16:29	ATG	TAL BUF
Total/NA	Analysis	625.1		10	538685	06/30/20 13:39	JMM	TAL BUF
Total/NA	Prep	3510C			538762	06/30/20 15:20	ATG	TAL BUF
Total/NA	Analysis	8270D		1	538875	07/01/20 12:56	JMM	TAL BUF
Total/NA	Prep	3510C			538962	07/01/20 15:48	ATG	TAL BUF
Total/NA	Analysis	608.3		1	539133	07/03/20 03:18	W1T	TAL BUF
Total/NA	Prep	1631E			440889	07/01/20 11:00	AJC	TAL CAN
Total/NA	Analysis	1631E		1	441337	07/06/20 11:59	AJC	TAL CAN
Dissolved	Filtration	FILTRATION			538744	06/30/20 14:12	KMP	TAL BUF
Dissolved	Prep	200.7			538920	07/02/20 09:03		TAL BUF
Dissolved	Analysis	200.7 Rev 4.4		1	539257	07/02/20 16:40	AMH	TAL BUF
Total/NA	Prep	200.7			538451	06/29/20 09:18		TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	538638	06/29/20 18:19		TAL BUF
Total/NA	Prep	3005A			539037	07/02/20 10:00		TAL BUF
Total/NA	Analysis	6010C		1	539260	07/02/20 20:35	AMH	TAL BUF
Total/NA	Prep	7470A			538722	06/30/20 12:40		TAL BUF
Total/NA	Analysis	7470A		1	538883	06/30/20 18:55		TAL BUF
Total/NA	Prep	1664B			538587	06/29/20 16:43		TAL BUF
Total/NA	Analysis	1664B		1		06/30/20 19:40		TAL BUF
Total/NA	Analysis	300.0		2	538674	06/30/20 17:51	IMZ	TAL BUF
Total/NA	Prep	Distill/CN			538713	06/30/20 11:22		TAL BUF
Total/NA	Analysis	335.4		1	538730	06/30/20 12:47	JRF	TAL BUF
Total/NA	Analysis	410.4		10	539130	07/01/20 17:59	CSS	TAL BUF
Total/NA	Analysis	420.4		1	539178	07/02/20 15:48	SRA	TAL BUF
Total/NA	Analysis	SM 2540C		1	538756	06/30/20 14:57	E1T	TAL BUF
Total/NA	Analysis	SM 2540D		1	538343	06/27/20 11:05	CSS	TAL BUF
Total/NA	Analysis	SM 3500 CR D		1	538385	06/27/20 11:02	CRK	TAL BUF
Total/NA	Analysis	SM 3500 FE D		1	538395	06/27/20 15:55	CSS	TAL BUF
Total/NA	Analysis	SM 4500 H+ B		1	538753	06/30/20 14:03	BEF	TAL BUF
Total/NA	Analysis	SM 5210B		1		06/27/20 06:33		TAL BUF
Total/NA	Analysis	SM 5210B		1		06/27/20 06:33		TAL BUF
Total/NA	Analysis	SM 5310C		4	539191	07/02/20 20:34	ULA	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc. Job ID: 480-171773-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	F	Program	Identification Number	Expiration Date
New York	١	NELAP	10026	04-02-21
The following analytes the agency does not of		port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
335.4	Distill/CN	Water	Cyanide, Total	
624.1		Water	1,2-Dichloroethene, Total	
625.1	625	Water	1,2-Dichlorobenzene	
625.1	625	Water	1,3-Dichlorobenzene	
625.1	625	Water	1,4-Dichlorobenzene	
SM 3500 CR D		Water	Chromium, hexavalent	
SM 3500 FE D		Water	Ferrous Iron	
SM 4500 H+ B		Water	рН	
SM 4500 H+ B		Water	Temperature	

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-21
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-20 *
Georgia	State	4062	02-23-21
Illinois	NELAP	004498	07-31-20
lowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21
Kentucky (UST)	State	112225	02-23-21
Kentucky (WW)	State	KY98016	12-31-20
Minnesota	NELAP	OH00048	12-31-20
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-21
Ohio VAP	State	CL0024	06-05-21
Oregon	NELAP	4062	02-24-21
Pennsylvania	NELAP	68-00340	08-31-20
Texas	NELAP	T104704517-18-10	08-31-20
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-20
Washington	State	C971	01-12-21
West Virginia DEP State		210	12-31-20

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

-	
-	
	5
	8

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
625.1	Semivolatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
508.3	Polychlorinated Biphenyls (PCBs) (GC)	40CFR136A	TAL BUF
1631E	Mercury, Low Level (CVAFS)	EPA	TAL CAN
200.7 Rev 4.4	Metals (ICP)	EPA	TAL BUF
010C	Metals (ICP)	SW846	TAL BUF
470A	Mercury (CVAA)	SW846	TAL BUF
664B	HEM and SGT-HEM	1664B	TAL BUF
0.00	Anions, Ion Chromatography	MCAWW	TAL BUF
35.4	Cyanide, Total	MCAWW	TAL BUF
10.4	COD	MCAWW	TAL BUF
20.4	Phenolics, Total Recoverable	MCAWW	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM 3500 CR D	Chromium, Hexavalent	SM	TAL BUF
SM 3500 FE D	Iron, Ferrous and Ferric	SM	TAL BUF
SM 4500 H+ B	рН	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF
SM 5310C	TOC	SM	TAL BUF
631E	Preparation, Mercury, Low Level	EPA	TAL CAN
664B	HEM and SGT-HEM (Aqueous)	1664B	TAL BUF
00.7	Preparation, Total Metals	EPA	TAL BUF
005A	Preparation, Total Metals	SW846	TAL BUF
510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF
030C	Purge and Trap	SW846	TAL BUF
25	Liquid-Liquid Extraction	40CFR136A	TAL BUF
470A	Preparation, Mercury	SW846	TAL BUF
)istill/CN	Distillation, Cyanide	None	TAL BUF
ILTRATION	Sample Filtration	None	TAL BUF

Protocol References:

1664B = EPA-821-98-002

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-171773-1	GEOBAG FILTRATE	Water	06/26/20 10:00	06/26/20 15:45	
480-171773-2	FILTER PRESS FILTRATE	Water	06/26/20 10:30	06/26/20 15:45	

Phone: 716-691-2600 Fax: 716-691-7991																	
	Sampler:	+		Lab PM:	M:					F	Carrier	Trackin	Carrier Tracking No(s)			COC No:	
Client Information	Bregory EINST	ts		Fisch	Fischer, Brian J											480-147151-32	700.1
Client Contact: James Hyzy	Phone: J			E-Mail brian	E-Mail: brian.fischer@testamericainc.com	estam	ericaii	IC.CON	-							Page 1 of 2	
Company: Sevenson Environmental Services, Inc.								Anal	Analysis	Req	Requested	pa				Job #:	
Address: 2749 Lockport Road	Due Date Requested:	:pe						-	-		ŀ						
City: Niagara Falls	19	iys):															- 0
State, Zip: NY, 14305	nac	Quote 4 302233	13022	425						s	F 300						~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Phone:	Po #: Purchase Order not required	not required			(0			c		aoq tr	••••	480	-1717	73 CF	ain of	480-171773 Chain of Custody)3 decahvdrate
Email: jhyzy@sevenson.com	:# OM				10000			19/97/1	_	olutar	S - tue				34	J - DI Water	U - Acetone V - MCAA
Project Name: Sevenson Environmental Services, Inc.	Project #: 48004527				JO SƏ					riority I	Pollut		oodtaM		oujete	17. AND 18. CONT.	W - pH 4-5 Z - other (specify)
Site: New Jersey	SSOW#:				x) asi		poqta			EC - Pi	, riority	CBOD	Local I			Other:	
Samnle Identification	Samule Date	Sample Time	Sample Type (C=comp,	Matrix (W=water, S=solid, O=wastefoll,	ield Filtered Perform MS/M 1631E - Local M	ul1 - 082_0.008	M 16001 - 1.011	120.4 NP - Loca	3270D - TCLP S	IA9_809_6.808	925.1_PREC - P	5540D - TSS	5240C_Calcd - I	A0147, 7470A	356.4 - Local Mo	Total Number	Snacial Instructions/Note.
			9	Preservation Code:	X	-	0.00	10,	-	z	1000	-	-	Z	1		
Geober Filterte	06 2620	10:00		Water	2	R	10		SN		>	1	2	2	B		
E, Iten Rigs Filtite	062620	0:30		Water	2	NI	5	0	SN	N	2	N	NN	2	8		
													_				
	-																
						-		+	-			-+	-+				
						_		+	-	-		-	-				
								-		-							
					-	+		+	+	-							
						$\left \right $											
Doccible Harrord Identification	_				Com	- 0		- 11	_			- 100				Samula Disnaced (A fee must be accorded if cannulate are addined from the disnatt	1 descenter 1
le Skin Irritant	Doison B Unknown	Ц	Radiological			Retur	Return To Client	Client			Disposal By Lab	al By	Lab		Ar	Archive For	Months
, III, IV, Ot					Spec	Special Instructions/QC Requirements	ruction	ns/QC	Regu	iireme	ents:						
Empty Kit Relinquished by:		Date:			Time:						0	Method	Method of Shipment	ment:			
Relinquished by: Breyory Frist	Date/Time:	11:00		Company	<u>e</u>	Received by:	by:	Um	No	3	210	10/	0 Date		12(0/20151	45 COMPANY
Relinquistred by	Date/Time:			Company	<u>~</u>	Received by	by:						Dat	Date/Time		1	Company
Relinquished by:	Date/Time:			Company	<u>a</u>	Received by:	by:						Da	Date/Time:			Company
Custody Seals Intact: Custody Seal No.: A Yes A No					0	Cooler Temperature(s) [°] C and Other Remarks:	empera	ture(s)	C and	Other F	Remark	S:	S	9	-	オケー	I TI F
					1												Ver: 01/16/2019

7/7/2020

Chain of Custody Record

10 Hazelwood Unve Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991	0	Chain of Custody Record	sin cus	touy he								America
Client Information	Sampler:	First		Lab PM: Fischer, I	: er. Brian J				Carrier Tracking No(s):	king No(s):	COC No: 480-147151-32700	51-32700.2
client Contact: James Hyzy	Phone:			E-Mail: brian.	E-Mail: brian.fischer@testamericainc.com	estamer	icainc.c	mo	_		Page: Page 2 of	2
Company: Sevenson Environmental Services, Inc.							A	sis	Requested		Job #:	
Address: 2749 Lockport Road	Due Date Requested:	:p					-	-			Preservation Codes	
City: Niagara Falls State, Zp: NY 14305	TAT Requested (days): 5BD 6	ys): Buotz		48022334	- 624.1						A - HCL B - NacoH C - Zn Acetate D - Nitric Acid E - NaHSO4	M - Texane M - None ate O - ASNaO2 cid P - Na2O45 4 O - Na2SO3
Phone:	Po #: Purchase Order not required	not require	q						qd		F - MeOH G - Amchloi H - Ascorbid	
Email: jhyzy@sevenson.com	:#OM				(on	_		_	1/9-1/1C			
Project Name: Sevenson Environmental Services, Inc. Site:	Project #: 48004527 SSOW#:				D (Yes or	atiles	əsp		D)&A . 0 - 7.(f containe L-EDA Other:	C - PH 4 - V Z - other (sr
		Sample	Sample Type (C=comp,	Matrix (w=water, S=solid, O=wasterol,	ield Filtered S. Perform MS/MS 24.1_PREC - Pri	260C - TCLP Vo	664B - Oil & Gre	200 EED - Loc 500 CR_D - Loc	002 (GOM) - 7.00		otal Number o	
			Preserva	Preservation Code:	X	8 Z		-	ZZ			
Geebor Filterto	062620	N.An		Water	N	S	2	NN	N		98	
FIL Marce FILL.	Challen	10.01		Water	A (N	2 2	N N	N		20	
Possible Hazard Identification			Radiological		Samp	l	osal (/ To Clier	fee ma	/ be assessed if sar	if samples a	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	r than 1 month) Months
, III, IV, Other					Speci	al Instru	ctions/C	DC Requ	Special Instructions/QC Requirements:			
Empty Kit Relinquished by:		Date:			Time:				A Meth	Method of Shipment:		
Relinguished by: Gravers Frist Relinguished by:	Date/Time: 063.01.0 Date/Time:	00:11		Company Sevinsion Company	<u> <u>x</u> <u>x</u></u>	Received by: Received by:	MAR	A WOW	w/Ciucol	Date/Time	0[26/201	SYS company
Relinquished by:	Date/Time:			Company	α α	Received by:	4			Date/Time:	ö	Company
Custody Seals Intact: Custody Seal No :						notor Tam	- nentural	Poo Uo Io	Color Temperaturals) Of and Other Bomarke			

Amherst, NY 14228-2298 / / (* ^O Phone: 716-691-2600 Fax: 716-691-7991				Halli of Custory Accord	n Inna							America
Client Information (Sub Contract Lab)	Sampler.			Lab PM Fische	Lati PM. Fischer, Brian J			Carrier Tracking No(s)	king No(s);	COC No 480-56	COC No: 480-56847.1	
Client Contact Shipping/Receiving	Phone:			E-Mail brian.	n.fischer@t	estamericainc	Com	State of Origin. New York	gin.	Page	Page Page 1 of 1	
Company TestAmerica Laboratories, Inc.					Accreditation	Accreditations Required (See note) NELAP - New York	note).			480-	Job #. 480-171773-1	
Address: 4101 Shuffel Street NW.	Due Date Requested 7/6/2020	:pa				4	Inalysis F	Analysis Requested		Pres	Co	100
City: North Canton	TAT Requested (days):	iys):			VIII) VIII)					8-N C-Z	A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Z.p. OH, 44720					252							P - Na204S Q - Na2SO3
Phone: 330-497-9396(Tel) 330-497-0772(Fax)	# Od			ĺ	. (2 - 2 9 - 1	-	R - Na2SZU3 S - H2SO4 T - TSP Dodecabydrate
Email	#OM											U - Acetone V - MCAA
Project Name Sevenson Environmental Services, Inc.	Project #: 48004527									the construction of the		W - pH 4-5 Z - other (specify)
Site: Sevenson Environmental	#MOSS				ev) as					of Other.	Ľ	
Samole Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=drab)	Matrix (w-water, S=solid. O-wastelo ¹ ,	Field Filtered M/SM monofiel MSM monofiel Perform MS/M					Total Number	UHC Special Ins	JHC Special Instructions/Note:
		X	Preserva	Preservation Code:	X	1201 220 22	122 222 B	2012201220	121212	X		
GEOBAG FILTRATE (480-171773-1)	6/26/20	10.00 Fastern		Water	×					2		
FILTER PRESS FILTRATE (480-171773-2)	6/26/20	10:30 Eastern		Water	×					2		
										1		
										627		
										9 7 83		
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyle & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently mantain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation states stopped back to the Eurofins TestAmerica attention in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation states should be brought to Eurofins. TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	America places the ownershi /matrix being analyzed, the si rrent to date, return the signed	p of method, a amples must b	nalyte & accre e shipped back tody attesting t	ditation compli- k to the Eurofin to said complic	ince upon out s TestAmerica ance to Eurofir	subcontract labor laboratory or othe is TestAmerica.	atories. This s ar instructions (ample shipment vill be provided.	is forwarded unde Any changes to a	er chain-of-custor	dy. If the laboral us should be bro	lory does not currently ught to Eurofins
Possible Hazard Identification					Sampl	e Disposal (J	A fee may b	e assessed	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	e retained lo	nger than 1	month)
Uncontirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank:	able Rank: 2	2		Specia	Special Instructions/QC Requirements	nt QC Require	Disposal By Lab nents:	y Lab	Archive For	or	Months
Emoty Kit Relinguished by:		Date:		1	Time			Metho	Method of Shipment			
Reinquistion for	Date/Time		60.1	Company	-	Received by			Date/Time	1-30	10 24	Company
Relinquished by	Date/Time			Company	Rec	Received by	1 16	-	Date/Time:		000	Company
Relinquished by.	Date/Time:			Company	Rec	Received by			Date/Time:			Company
Custody Seals Intact: Custody Seal No.: A Vec A No.					Š	Cooler Temperature(s) ^o C and Other Remarks	s) °C and Othe	r Remarks:				
												Ver: 01/16/2019
					15	13 14			8 9		5 6	

7/7/2020

İ

Curofins TestAmerica Canton Sample Receipt Form/Narrative	Login # :
	Cooler unpacked by;
10.0.	
	11/1/1
edEx: 1 st Grd Exp UPS FAS Clipper Client Drop Off TestAmerica Courier	Other
Receipt After-hours: Drop-off Date/Time Storage Location	
 Packing material used: Bubble Wrap Foam Clastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None Cooler temperature upon receipt See Multiple Cooler For IR GUN# IR-10 (CF +0.7 °C) Observed Cooler Temp. C. 9 °C Corrected Cooler IR GUN #IR-11 (CF +0.9 °C) Observed Cooler Temp. C. 9 °C Corrected Cooler Cooler Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity Yes -Were the seals on the outside of the cooler(s) signed & dated? Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes -Were tamper/custody seals intact and uncompromised? Shippers' packing slip attached to the cooler(s)? Did custody papers relinquished & signed in the appropriate place? Was/were the person(s) who collected the samples clearly identified on the COC? Yes Did all bottle sarrive in good condition (Unbroken)? Could all bottle labels be reconciled with the COC? Were correct bottle(s) used for the test(s) indicated? Sufficient quantity received to perform indicated analyses? Are these work share samples? 	Temp. °C Temp. / 8 °C S No No NA No No No No No No No No No No
	s No NA pH Strip Lot# <u>HC91129</u>
 2. Were all preserved sample(s) at the correct pH upon receipt? 3. Were VOAs on the COC? 4. Were air bubbles >6 mm in any VOA vials? 5. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes 6. Was a LL Hg or Me Hg trip blank present? Yes 	s No s No s No s No
 12. Were all preserved sample(s) at the correct pH upon receipt? 13. Were VOAs on the COC? 14. Were air bubbles >6 mm in any VOA vials? 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes 	s No s No s No s No
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes Yes Yes Contacted PM Date by via Verbal V	s No s No s No s No
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes Contacted PM Date by via Verbal V Concerning	s No s No s No Voice Mail Other
2. Were all preserved sample(s) at the correct pH upon receipt? Yes 3. Were VOAs on the COC? Yes 4. Were air bubbles >6 mm in any VOA vials? Larger than this. 5. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 6. Was a LL Hg or Me Hg trip blank present? Yes Contacted PM Date by via Verbal V Concerning	S No NA S No Voice Mail Other Samples processed by:
2. Were all preserved sample(s) at the correct pH upon receipt? 3. Were VOAs on the COC? 4. Were air bubbles >6 mm in any VOA vials? 5. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes 5. Was a LL Hg or Me Hg trip blank present? 6. Was a LL Hg or Me Hg trip blank present? Contacted PMDatebyvia Verbal V Concerning 7. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 8. SAMPLE CONDITION Sample(s)were received after the recommended hold	Samples processed by:
2. Were all preserved sample(s) at the correct pH upon receipt? Yes 3. Were VOAs on the COC? Yes 4. Were air bubbles >6 mm in any VOA vials? Larger than this. Yes 5. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes Yes 6. Was a LL Hg or Me Hg trip blank present? Yes Yes Contacted PM Date by via Verbal V Yes Concerning	Samples processed by:
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes 17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	Samples processed by:
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes 17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES Yes 18. SAMPLE CONDITION were received after the recommended hold	Samples processed by:
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes 17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	Samples processed by: Samples processed by:
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes 17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	Samples processed by:

Login Sample Receipt Checklist

Client: Sevenson Environmental Services, Inc.

Login Number: 171773 List Number: 1 Creator: Stopa, Erik S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	sevenson
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

List Source: Eurofins TestAmerica, Buffalo

Appendix D Filter Test Results

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-171773-1

Client Project/Site: Sevenson Environmental Services, Inc.

For:

Sevenson Environmental Services, Inc. 2749 Lockport Road Niagara Falls, New York 14305

Attn: James Hyzy

Authorized for release by: 7/7/2020 12:39:06 PM Alexander Gilbert, Project Management Assistant I alexander.gilbert@testamericainc.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835 brian.fischer@testamericainc.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	5
Detection Summary	7
Client Sample Results	9
Surrogate Summary	19
QC Sample Results	21
QC Association Summary	39
Lab Chronicle	45
Certification Summary	47
Method Summary	48
Sample Summary	49
Chain of Custody	50
Receipt Checklists	54

Definitions/Glossary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

2

Qualifiers

		— <u>ა</u>
GC/MS VOA Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	- 4
GC/MS Semi	VOA	5
Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	6
*1	LCS/LCSD RPD exceeds control limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Х	Surrogate recovery exceeds control limits	
GC Semi VO	Α	8
Qualifier	Qualifier Description	
Х	Surrogate recovery exceeds control limits	9
Metals Qualifier	Qualifier Description	10
	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
General Che	mistry	
Qualifier	Qualifier Description	
b	Result Detected in the Unseeded Control blank (USB).	_
F3	Duplicate RPD exceeds the control limit	13
Н	Sample was prepped or analyzed beyond the specified holding time	
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		[—] 15
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
	Listed under the UDU setures to design at a that the result is repeated as a desurgisht hasis	

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control

Definitions/Glossary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

3

Glossary (Continued)

Ciccoury	(continuou)
Abbreviation	These commonly used abbreviations may or may not be present in this report.
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 480-171773-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-171773-1

Comments

No additional comments.

Receipt

The samples were received on 6/26/2020 3:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 4.7° C and 5.6° C.

GC/MS VOA

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: GEOBAG FILTRATE (480-171773-1). Elevated reporting limits (RLs) are provided.

Method 624.1: The following sample was diluted due to the abundance of non-target analytes: FILTER PRESS FILTRATE (480-171773-2). Elevated reporting limits (RLs) are provided.

Method 8260C: The following samples were diluted due to the abundance of non-target analytes: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-538566 recovered above the upper control limit for Carbon tetrachloride. The samples associated with this CCV were non-detect for the affected analyte; therefore, the data have been reported. The associated samples are impacted: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2).

Method 8260C: The following samples were collected in unpreserved vials; however, the test assigned was a preserved test. The samples were analyzed within the 7-day holding time specified for unpreserved samples: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2)..

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 625.1: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 480-538584 and analytical batch 480-538685 recovered outside control limits for the following analytes: Benzidine.

Method 625.1: The following samples were diluted due to the nature of the sample matrix: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2). Elevated reporting limits (RLs) are provided.

Method 625.1: The following sample required a dilution due to the nature of the sample matrix: GEOBAG FILTRATE (480-171773-1). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following samples contained an allowable number of surrogate compounds outside limits: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2). These results have been reported and qualified.

Method 8270D: The laboratory control sample (LCS) for preparation batch 480-538762 and analytical batch 480-538875 recovered outside control limits for the following surrogate: 2,4,6-Tribromophenol. This surrogate is biased high and no detections were found for associated analytes in the following affected samples: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2). Therefore, the data has been reported.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-538875 recovered outside acceptance criteria, low biased, for Pentachlorophenol. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Job ID: 480-171773-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

Method 8270D: The laboratory control sample (LCS) for preparation batch 480-538762 and analytical batch 480-538875 recovered outside control limits for the following analytes: 2,4,5-Trichlorophenol and 2,4,6-Trichlorophenol. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted due to the nature of the sample matrix: FILTER PRESS FILTRATE (480-171773-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 608.3: Surrogate recovery for the following samples were outside control limits: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6010C: The interference check standard solution (ICSA) associated with the following samples showed results for Barium at a level greater than 2 times the limit of detection (LOD). It is believed that the solution contains trace impurities of this element and the results are not due to matrix interference. These results are consistent with those found by the manufacturer of the ICSA solution. GEOBAG FILTRATE (480-171773-1), FILTER PRESS FILTRATE (480-171773-2), (LCS 480-539037/2-A) and (MB 480-539037/1-A)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method SM 3500 CR D: The following samples were analyzed outside of analytical holding time due to laboratory oversight: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2).

Method SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2).

Methods 9040C, SM 4500 H+ B: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: GEOBAG FILTRATE (480-171773-1) and FILTER PRESS FILTRATE (480-171773-2).

Method 410.4: The method blank for analytical batch 480-538991 contained analyte above the reporting limit (RL). Associated sample(s) were not re-extracted and/or re-analyzed because results were greater than 10X the value found in the method blank.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE

	Job ID: 4	80-171773-1	
Lab Sa	mple ID: 480)-171773-1	
Dil Fac	D Method	Prep Type	
10	624.1	Total/NA	
10	624.1	Total/NA	
10	624.1	Total/NA	5
4	8260C	Total/NA	
20	625.1	Total/NA	8
20	625.1	Total/NA	
20	625.1	Total/NA	0
20	625.1	Total/NA	9
20	625.1	Total/NA	
20	625.1	Total/NA	
20	625.1	Total/NA	
1	8270D	Total/NA	
1	8270D	Total/NA	
1	8270D	Total/NA	
2	1631E	Total/NA	
1	200.7 Rev 4.4	Total/NA	13
1	200.7 Rev 4.4	Total/NA	
1	6010C	Total/NA	
1	6010C	Total/NA	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	69		50	6.0	ug/L	10	_	624.1	Total/NA
Ethylbenzene	330		50	4.6	ug/L	10		624.1	Total/NA
Toluene	13	J	50	4.5	ug/L	10		624.1	Total/NA
Benzene	60		4.0	1.6	ug/L	4		8260C	Total/NA
Acenaphthene	250		100	16	ug/L	20		625.1	Total/NA
Anthracene	84	J	100	28	ug/L	20		625.1	Total/NA
Benzo[a]anthracene	47	J	100	22	ug/L	20		625.1	Total/NA
Benzo[a]pyrene	51	J	100	26	ug/L	20		625.1	Total/NA
Benzo[b]fluoranthene	26	J	100	24	ug/L	20		625.1	Total/NA
Chrysene	41	J	100	20	ug/L	20		625.1	Total/NA
Fluoranthene	83	J	100	32	ug/L	20		625.1	Total/NA
Fluorene	99	J	100	20	ug/L	20		625.1	Total/NA
Naphthalene	820		100	17	ug/L	20		625.1	Total/NA
Phenanthrene	320		100	24	ug/L	20		625.1	Total/NA
Pyrene	160		100	28	ug/L	20		625.1	Total/NA
2-Methylphenol	0.82	J	5.0	0.40	ug/L	1		8270D	Total/NA
3-Methylphenol	6.2	J	10	0.40	ug/L	1		8270D	Total/NA
4-Methylphenol	6.2	J	10	0.36	ug/L	1		8270D	Total/NA
Mercury	35.1		1.0	0.28	ng/L	2		1631E	Total/NA
Arsenic	0.0091	J	0.015	0.0056	mg/L	1		200.7 Rev 4.4	Total/NA
Iron	3.6		0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA
Arsenic	0.0076	J	0.015	0.0056	mg/L	1		6010C	Total/NA
Barium	0.048	٨	0.0020	0.00070	mg/L	1		6010C	Total/NA
Oil & Grease	5.3		4.7	1.3	mg/L	1		1664B	Total/NA
Fluoride	0.099		0.050	0.026	mg/L	1		300.0	Total/NA
Chemical Oxygen Demand	57.8		10.0	5.0	mg/L	1		410.4	Total/NA
Phenolics, Total Recoverable	0.044		0.010	0.0035	mg/L	1		420.4	Total/NA
Total Dissolved Solids	194		10.0	4.0	mg/L	1		SM 2540C	Total/NA
Total Suspended Solids	10.8		4.0	4.0	mg/L	1		SM 2540D	Total/NA
pH	7.4	HF	0.1	0.1	SU	1		SM 4500 H+ B	Total/NA
Temperature	19.1	HF	0.001	0.001	Degrees C	1		SM 4500 H+ B	Total/NA
Biochemical Oxygen Demand	11.9	b	6.0	6.0	mg/L	1		SM 5210B	Total/NA
Carbonaceous Biochemical Oxygen Demand	16.5	b	6.0	6.0	mg/L	1		SM 5210B	Total/NA
Total Organic Carbon	14.5		1.0	0.43	mg/L	1		SM 5310C	Total/NA

Client Sample ID: FILTER PRESS FILTRATE

Lab Sample ID: 480-171773-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	73		50	6.0	ug/L	10	_	624.1	Total/NA
Ethylbenzene	130		50	4.6	ug/L	10		624.1	Total/NA
Benzene	50		5.0	2.1	ug/L	5		8260C	Total/NA
Acenaphthene	12	J	50	8.1	ug/L	10		625.1	Total/NA
Bis(2-ethylhexyl) phthalate	33	J	100	12	ug/L	10		625.1	Total/NA
Fluorene	11	J	50	10	ug/L	10		625.1	Total/NA
2-Methylphenol	2.6	J	5.0	0.40	ug/L	1		8270D	Total/NA
Mercury	3.8		0.50	0.14	ng/L	1		1631E	Total/NA
Chromium	0.0022	J	0.0040	0.0010	mg/L	1		200.7 Rev 4.4	Total/NA
Iron	1.3		0.050	0.019	mg/L	1		200.7 Rev 4.4	Total/NA
Lead	0.0047	J	0.010	0.0030	mg/L	1		200.7 Rev 4.4	Total/NA
Barium	0.034	۸	0.0020	0.00070	mg/L	1		6010C	Total/NA
Chromium	0.0021	J	0.0040	0.0010	mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: FILTER PRESS FILTRATE (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Lead	0.0040	J	0.010	0.0030	mg/L	1	6010C	Total/NA
Oil & Grease	2.9	J	4.8	1.3	mg/L	1	1664B	Total/NA
Fluoride	0.17		0.10	0.052	mg/L	2	300.0	Total/NA
Chemical Oxygen Demand	858		100	50.0	mg/L	10	410.4	Total/NA
Phenolics, Total Recoverable	0.040		0.010	0.0035	mg/L	1	420.4	Total/NA
Total Dissolved Solids	387		10.0	4.0	mg/L	1	SM 2540C	Total/NA
Total Suspended Solids	16.4		4.0	4.0	mg/L	1	SM 2540D	Total/NA
рН	7.5	HF	0.1	0.1	SU	1	SM 4500 H+ B	Total/NA
Temperature	19.3	HF	0.001	0.001	Degrees C	1	SM 4500 H+ B	Total/NA
Biochemical Oxygen Demand	99.6	b	60.0	60.0	mg/L	1	SM 5210B	Total/NA
Carbonaceous Biochemical Oxygen	98.8	b	24.0	24.0	mg/L	1	SM 5210B	Total/NA
Demand Total Organic Carbon	183		4.0	1.7	ma/L	4	SM 5310C	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 480-171773-2

Job ID: 480-171773-1

Client Sample Results

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

_ Method: 624.1 - Volatile Or	ganic Compou	inds (GC/N	IS)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		50	3.9	ug/L			06/27/20 20:32	10
1,1,2,2-Tetrachloroethane	ND		50	2.6	ug/L			06/27/20 20:32	10
1,1,2-Trichloroethane	ND		50	4.8	ug/L			06/27/20 20:32	10
1,1-Dichloroethane	ND		50	5.9	ug/L			06/27/20 20:32	10
1,1-Dichloroethene	ND		50	8.5	ug/L			06/27/20 20:32	10
1,2-Dichlorobenzene	ND		50	4.4	ug/L			06/27/20 20:32	10
1,2-Dichloroethane	ND		50	6.0	ug/L			06/27/20 20:32	10
1,2-Dichloroethene, Total	ND		100	32	ug/L			06/27/20 20:32	10
1,2-Dichloropropane	ND		50	6.1	ug/L			06/27/20 20:32	10
1,3-Dichlorobenzene	ND		50	5.4	ug/L			06/27/20 20:32	10
1,4-Dichlorobenzene	ND		50	5.1	ug/L			06/27/20 20:32	10
2-Chloroethyl vinyl ether	ND		250	19	ug/L			06/27/20 20:32	10
Acrolein	ND		1000	170	ug/L			06/27/20 20:32	10
Acrylonitrile	ND		500	19	ug/L			06/27/20 20:32	10
Benzene	69		50	6.0	ug/L			06/27/20 20:32	10
Bromoform	ND		50	4.7	ug/L			06/27/20 20:32	10
Bromomethane	ND		50	12	ug/L			06/27/20 20:32	10
Carbon tetrachloride	ND		50	5.1	ug/L			06/27/20 20:32	10
Chlorobenzene	ND		50	4.8	ug/L			06/27/20 20:32	10
Chlorodibromomethane	ND		50	4.1	ug/L			06/27/20 20:32	10
Chloroethane	ND		50	8.7	ug/L			06/27/20 20:32	10
Chloroform	ND		50	5.4	ug/L			06/27/20 20:32	10
Chloromethane	ND		50	6.4	ug/L			06/27/20 20:32	10
cis-1,3-Dichloropropene	ND		50	3.3	ug/L			06/27/20 20:32	10
Dichlorobromomethane	ND		50	5.4	ug/L			06/27/20 20:32	10
Ethylbenzene	330		50	4.6	ug/L			06/27/20 20:32	10
Methylene Chloride	ND		50	8.1	ug/L			06/27/20 20:32	10
Tetrachloroethene	ND		50	3.4	ug/L			06/27/20 20:32	10
Toluene	13	J	50	4.5	ug/L			06/27/20 20:32	10
trans-1,2-Dichloroethene	ND		50	5.9	ug/L			06/27/20 20:32	10
trans-1,3-Dichloropropene	ND		50	4.4	ug/L			06/27/20 20:32	10
Trichloroethene	ND		50	6.0	ug/L			06/27/20 20:32	10
Vinyl chloride	ND		50	7.5	ug/L			06/27/20 20:32	10
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		68 - 130			-		06/27/20 20:32	10
4-Bromofluorobenzene (Surr)	101		76 - 123					06/27/20 20:32	10
Dibromofluoromethane (Surr)	103		75 - 123					06/27/20 20:32	10
Toluene-d8 (Surr)	101		77 - 120					06/27/20 20:32	10

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		4.0	0.84	ug/L			06/29/20 22:11	4
2-Butanone (MEK)	ND		40	5.3	ug/L			06/29/20 22:11	4
Benzene	60		4.0	1.6	ug/L			06/29/20 22:11	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			06/29/20 22:11	4
Chlorobenzene	ND		4.0	3.0	ug/L			06/29/20 22:11	4
Chloroform	ND		4.0	1.4	ug/L			06/29/20 22:11	4
Tetrachloroethene	ND		4.0	1.4	ug/L			06/29/20 22:11	4
Trichloroethene	ND		4.0	1.8	ug/L			06/29/20 22:11	4

Eurofins TestAmerica, Buffalo

Job ID: 480-171773-1

Lab Sample ID: 480-171773-1 Matrix: Water

Client Sample Results

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

108

Analyte	Result Qua	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND	4.0	3.6 ug/L			06/29/20 22:11	4
1,1-Dichloroethene	ND	4.0	1.2 ug/L			06/29/20 22:11	4
Surrogate	%Recovery Qua	alifier Limits			Prepared	Analyzed	Dil Fac
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery Qua	Limits77 - 120			Prepared	Analyzed 06/29/20 22:11	Dil Fac
U					Prepared		Dil Fac 4 4

75 - 123

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Method: 625.1 - Semivolati Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND	200	16	ug/L		06/29/20 16:29	06/30/20 13:15	20
1,2-Dichlorobenzene	ND	200	100	ug/L		06/29/20 16:29	06/30/20 13:15	20
1,2-Diphenylhydrazine	ND	200	16	ug/L		06/29/20 16:29	06/30/20 13:15	20
1,3-Dichlorobenzene	ND	200	14	ug/L		06/29/20 16:29	06/30/20 13:15	20
1,4-Dichlorobenzene	ND	200	110	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,2'-oxybis[1-chloropropane]	ND	100	17	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,4,6-Trichlorophenol	ND	100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,4-Dichlorophenol	ND	100	15	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,4-Dimethylphenol	ND	100	28	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,4-Dinitrophenol	ND	200	100	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,4-Dinitrotoluene	ND	200	100	ug/L		06/29/20 16:29	06/30/20 13:15	20
2,6-Dinitrotoluene	ND	100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
2-Chloronaphthalene	ND	100	18	ug/L		06/29/20 16:29	06/30/20 13:15	20
2-Chlorophenol	ND	100	13	ug/L		06/29/20 16:29	06/30/20 13:15	20
2-Nitrophenol	ND	100	14	ug/L		06/29/20 16:29	06/30/20 13:15	20
3,3'-Dichlorobenzidine	ND	100	16	ug/L		06/29/20 16:29	06/30/20 13:15	20
4,6-Dinitro-2-methylphenol	ND	200	13	ug/L		06/29/20 16:29	06/30/20 13:15	20
4-Bromophenyl phenyl ether	ND	100	28	ug/L		06/29/20 16:29	06/30/20 13:15	20
4-Chloro-3-methylphenol	ND	100	22	ug/L		06/29/20 16:29	06/30/20 13:15	20
4-Chlorophenyl phenyl ether	ND	100	26	ug/L		06/29/20 16:29	06/30/20 13:15	20
4-Nitrophenol	ND	300	200	ug/L		06/29/20 16:29	06/30/20 13:15	20
Acenaphthene	250	100	16	ug/L		06/29/20 16:29	06/30/20 13:15	20
Acenaphthylene	ND	100	17	ug/L		06/29/20 16:29	06/30/20 13:15	20
Anthracene	84 J	100	28	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzidine	ND *1	1600	700	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzo[a]anthracene	47 J	100	22	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzo[a]pyrene	51 J	100	26	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzo[b]fluoranthene	26 J	100	24	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzo[g,h,i]perylene	ND	100	30	ug/L		06/29/20 16:29	06/30/20 13:15	20
Benzo[k]fluoranthene	ND	100	26	ug/L		06/29/20 16:29	06/30/20 13:15	20
Bis(2-chloroethoxy)methane	ND	100	15	ug/L		06/29/20 16:29	06/30/20 13:15	20
Bis(2-chloroethyl)ether	ND	100	19	ug/L		06/29/20 16:29	06/30/20 13:15	20
Bis(2-ethylhexyl) phthalate	ND	200	24	ug/L		06/29/20 16:29	06/30/20 13:15	20
Butyl benzyl phthalate	ND	100	22	ug/L		06/29/20 16:29	06/30/20 13:15	20
Chrysene	41 J	100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
Dibenz(a,h)anthracene	ND	100	30	ug/L		06/29/20 16:29	06/30/20 13:15	20
Diethyl phthalate	ND	100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
Dimethyl phthalate	ND	100	18	ug/L		06/29/20 16:29	06/30/20 13:15	20
Di-n-butyl phthalate	ND	100	32	ug/L		06/29/20 16:29	06/30/20 13:15	20

Eurofins TestAmerica, Buffalo

Job ID: 480-171773-1

Lab Sample ID: 480-171773-1 Matrix: Water

.

06/29/20 22:11

6

4

Client Sample Results

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Pentachlorophenol

2,4,6-Tribromophenol (Surr)

Nitrobenzene

Pyridine

Surrogate

2-Fluorobiphenyl

Phenol-d5 (Surr)

2-Fluorophenol (Surr)

Nitrobenzene-d5 (Surr)

p-Terphenyl-d14 (Surr)

Job ID: 480-171773-1

Lab Sample ID: 480-171773-1

Matrix: Water

5

6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate	ND		100	24	ug/L		06/29/20 16:29	06/30/20 13:15	20
Fluoranthene	83	J	100	32	ug/L		06/29/20 16:29	06/30/20 13:15	20
Fluorene	99	J	100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
Hexachlorobenzene	ND		100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
Hexachlorobutadiene	ND		100	20	ug/L		06/29/20 16:29	06/30/20 13:15	20
Hexachlorocyclopentadiene	ND		200	100	ug/L		06/29/20 16:29	06/30/20 13:15	2
Hexachloroethane	ND		100	12	ug/L		06/29/20 16:29	06/30/20 13:15	2
Indeno[1,2,3-cd]pyrene	ND		100	30	ug/L		06/29/20 16:29	06/30/20 13:15	2
Isophorone	ND		100	15	ug/L		06/29/20 16:29	06/30/20 13:15	2
Naphthalene	820		100	17	ug/L		06/29/20 16:29	06/30/20 13:15	2
Nitrobenzene	ND		100	16	ug/L		06/29/20 16:29	06/30/20 13:15	2
N-Nitrosodimethylamine	ND		200	100	ug/L		06/29/20 16:29	06/30/20 13:15	2
N-Nitrosodi-n-propylamine	ND		100	18	ug/L		06/29/20 16:29	06/30/20 13:15	2
N-Nitrosodiphenylamine	ND		100	7.9	ug/L		06/29/20 16:29	06/30/20 13:15	2
Pentachlorophenol	ND		200	32	ug/L		06/29/20 16:29	06/30/20 13:15	2
Phenanthrene	320		100	24	ug/L		06/29/20 16:29	06/30/20 13:15	2
Phenol	ND		100	7.0	ug/L		06/29/20 16:29	06/30/20 13:15	2
Pyrene	160		100	28	ug/L		06/29/20 16:29	06/30/20 13:15	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	94		52 - 151				06/29/20 16:29	06/30/20 13:15	2
2-Fluorobiphenyl	88		44 - 120				06/29/20 16:29	06/30/20 13:15	2
2-Fluorophenol	39		17 - 120				06/29/20 16:29	06/30/20 13:15	2
Nitrobenzene-d5	76		15_314				06/29/20 16:29	06/30/20 13:15	2
Phenol-d5	28		8 - 424				06/29/20 16:29	06/30/20 13:15	2
p-Terphenyl-d14 (Surr)	67		22 - 125				06/29/20 16:29	06/30/20 13:15	2
Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte		Qualifier	ŔL		Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dichlorobenzene	ND		10	0.46	ug/L		06/30/20 15:20	07/01/20 12:27	
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		06/30/20 15:20	07/01/20 12:27	
2,4,5-Trichlorophenol	ND	*	5.0	0.48	ug/L		06/30/20 15:20	07/01/20 12:27	
2,4,6-Trichlorophenol	ND	*	5.0	0.61	ug/L		06/30/20 15:20	07/01/20 12:27	
2-Methylphenol	0.82	J	5.0	0.40	ug/L		06/30/20 15:20	07/01/20 12:27	
3-Methylphenol	6.2	J	10	0.40	ug/L		06/30/20 15:20	07/01/20 12:27	
4-Methylphenol	6.2	J	10	0.36	ug/L		06/30/20 15:20	07/01/20 12:27	
			5.0	0.54				07/04/00 40:07	

Prepared

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

06/30/20 15:20 07/01/20 12:27

Analyzed

5.0

5.0

5.0

5.0

10

25

Limits

41 - 120

48 - 120

35 - 120

46 - 120

0.51 ug/L

0.68 ug/L

0.59 ug/L

0.29 ug/L

2.2 ug/L

0.41 ug/L

ND

ND

ND

ND

ND

ND

%Recovery Qualifier

137 X

98

75

104

89

53

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

Client Sample Results

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

Job ID: 480-171773-1

Lab Sample ID: 480-171773-1 Matrix: Water

Method: 608.3 - Polychlorir Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1016	ND		0.060	0.038	ug/L		07/01/20 15:48	07/03/20 03:05	-
PCB-1221	ND		0.060	0.038	-		07/01/20 15:48	07/03/20 03:05	
PCB-1232	ND		0.060	0.038	-		07/01/20 15:48	07/03/20 03:05	
PCB-1242	ND		0.060	0.038	J			07/03/20 03:05	
PCB-1248	ND		0.060	0.038	-			07/03/20 03:05	
PCB-1254	ND		0.060	0.031	-			07/03/20 03:05	
PCB-1260	ND		0.060	0.031	-			07/03/20 03:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl			36 - 121				07/01/20 15:48	07/03/20 03:05	
Tetrachloro-m-xylene (Surr)	42		42 - 135				07/01/20 15:48	07/03/20 03:05	
Method: 1631E - Mercury, L	ow Level (CV								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	35.1		1.0	0.28	ng/L		07/01/20 11:00	07/06/20 11:45	
Method: 200.7 Rev 4.4 - Me	tals (ICP)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.0091	J	0.015	0.0056	mg/L		06/29/20 09:18	06/29/20 18:23	
Chromium	ND		0.0040	0.0010	mg/L		06/29/20 09:18	06/29/20 18:23	
ron	3.6		0.050	0.019	-		06/29/20 09:18	06/29/20 18:23	
_ead	ND		0.010	0.0030	mg/L		06/29/20 09:18	06/29/20 18:23	
Arsenic, Dissolved Chromium, Dissolved ron, Dissolved .ead, Dissolved	ND ND ND ND		0.015 0.0040 0.050 0.010	0.0056 0.0010 0.019 0.0030	mg/L mg/L		07/02/20 09:03	07/02/20 16:22 07/02/20 16:22 07/02/20 16:22 07/02/20 16:22	
Method: 6010C - Metals (IC	P)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.0076	J	0.015	0.0056	mg/L		07/02/20 10:00	07/02/20 20:31	
Barium	0.048	^	0.0020	0.00070	mg/L		07/02/20 10:00	07/02/20 20:31	
Cadmium	ND		0.0020	0.00050	mg/L		07/02/20 10:00	07/02/20 20:31	
Chromium	ND		0.0040	0.0010	mg/L		07/02/20 10:00	07/02/20 20:31	
_ead	ND		0.010	0.0030	mg/L		07/02/20 10:00	07/02/20 20:31	
Selenium	ND		0.025	0.0087	mg/L		07/02/20 10:00	07/02/20 20:31	
Silver	ND		0.0060	0.0017	mg/L		07/02/20 10:00	07/02/20 20:31	
Method: 7470A - Mercury (
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020	0.00012	mg/L		06/30/20 12:40	06/30/20 18:54	
General Chemistry	Decult	Qualifier	Ы	MDI	11		Drenered	Anolymod	
Analyte Dil & Grease		Qualifier		MDL		D	Prepared	Analyzed	Dil Fa
	5.3		4.7		mg/L		06/29/20 16:43		
Fluoride	0.099		0.050	0.026	-			06/30/20 17:37	
Quanida Tatal								DG/20/20 40.45	
Cyanide, Total Chemical Oxygen Demand	ND 57.8		0.010 10.0	0.0050	mg/L mg/L		06/30/20 11:22	06/30/20 12:45 06/28/20 06:50	

Client Sample Results

RL

10.0

0.010

0.10

6.0

6.0

1.0

RL

4.0

0.1

0.001

Result Qualifier

194

ND H

ND HF

11.9 b

16.5 b

Result Qualifier

7.4 HF

19.1 HF

14.5

10.8

MDL Unit

0.0050 mg/L

0.075 mg/L

6.0 mg/L

6.0 mg/L

0.43 mg/L

RL Unit

4.0 mg/L

0.001 Degrees C

0.1 SU

4.0 mg/L

D

D

Prepared

Prepared

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

General Chemistry (Continued)

Analyte

Analyte

Temperature

pН

Ferrous Iron

Total Dissolved Solids

Biochemical Oxygen Demand

Carbonaceous Biochemical

Chromium, hexavalent

Oxygen Demand

Total Organic Carbon

Total Suspended Solids

Job ID: 480-171773-1

Analyzed

06/30/20 14:57

06/27/20 11:02

06/27/20 15:55

06/27/20 06:33

06/27/20 06:33

06/30/20 21:37

Analyzed

06/27/20 11:05

06/30/20 14:00

06/30/20 14:00

Lab Sample ID: 480-171773-1 Matrix: Water

Dil Fac

1

1

1

1

1

1

1

1

1

Dil Fac

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Method: 624.1 - Volatile Org Analyte		nds (GC/MS) Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1-Trichloroethane			50		ug/L		Tiepareu	06/27/20 20:57	10	
1,1,2,2-Tetrachloroethane	ND		50		ug/L			06/27/20 20:57	10	6
1,1,2-Trichloroethane	ND		50		ug/L			06/27/20 20:57	10	U
1.1-Dichloroethane	ND		50		ug/L			06/27/20 20:57	10	7
1.1-Dichloroethene	ND		50		ug/L			06/27/20 20:57	10	
1,2-Dichlorobenzene	ND		50		ug/L			06/27/20 20:57	10	0
1,2-Dichloroethane	ND		50		ug/L			06/27/20 20:57	10	ð
1,2-Dichloroethene, Total	ND		100		ug/L			06/27/20 20:57	10	
1,2-Dichloropropane	ND		50		ug/L			06/27/20 20:57	10	9
1,3-Dichlorobenzene	ND		50	5.4	ug/L			06/27/20 20:57	10	10
1,4-Dichlorobenzene	ND		50		ug/L			06/27/20 20:57	10	10
2-Chloroethyl vinyl ether	ND		250		ug/L			06/27/20 20:57	10	
Acrolein	ND		1000	170	ug/L			06/27/20 20:57	10	11
Acrylonitrile	ND		500		ug/L			06/27/20 20:57	10	
Benzene	73		50	6.0	ug/L			06/27/20 20:57	10	12
Bromoform	ND		50	4.7	ug/L			06/27/20 20:57	10	
Bromomethane	ND		50	12	ug/L			06/27/20 20:57	10	13
Carbon tetrachloride	ND		50	5.1	ug/L			06/27/20 20:57	10	_
Chlorobenzene	ND		50	4.8	ug/L			06/27/20 20:57	10	14
Chlorodibromomethane	ND		50	4.1	ug/L			06/27/20 20:57	10	
Chloroethane	ND		50	8.7	ug/L			06/27/20 20:57	10	15
Chloroform	ND		50	5.4	ug/L			06/27/20 20:57	10	
Chloromethane	ND		50	6.4	ug/L			06/27/20 20:57	10	
cis-1,3-Dichloropropene	ND		50		ug/L			06/27/20 20:57	10	
Dichlorobromomethane	ND		50		ug/L			06/27/20 20:57	10	
Ethylbenzene	130		50	4.6	ug/L			06/27/20 20:57	10	
Methylene Chloride	ND		50		ug/L			06/27/20 20:57	10	
Tetrachloroethene	ND		50		ug/L			06/27/20 20:57	10	
Toluene	ND		50		ug/L			06/27/20 20:57	10	
trans-1,2-Dichloroethene	ND		50		ug/L			06/27/20 20:57	10	
trans-1,3-Dichloropropene	ND		50		ug/L			06/27/20 20:57	10	
Trichloroethene	ND		50		ug/L			06/27/20 20:57	10	
Vinyl chloride	ND		50	7.5	ug/L			06/27/20 20:57	10	

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	68 - 130		06/27/20 20:57	10
4-Bromofluorobenzene (Surr)	99	76 - 123		06/27/20 20:57	10
Dibromofluoromethane (Surr)	102	75 - 123		06/27/20 20:57	10
Toluene-d8 (Surr)	96	77 - 120		06/27/20 20:57	10

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		5.0	1.1	ug/L			06/29/20 22:34	5
2-Butanone (MEK)	ND		50	6.6	ug/L			06/29/20 22:34	5
Benzene	50		5.0	2.1	ug/L			06/29/20 22:34	5
Carbon tetrachloride	ND		5.0	1.4	ug/L			06/29/20 22:34	5
Chlorobenzene	ND		5.0	3.8	ug/L			06/29/20 22:34	5
Chloroform	ND		5.0	1.7	ug/L			06/29/20 22:34	5
Tetrachloroethene	ND		5.0	1.8	ug/L			06/29/20 22:34	5
Trichloroethene	ND		5.0	2.3	ug/L			06/29/20 22:34	5

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-171773-2 **Matrix: Water**

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

106

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0	4.5	ug/L			06/29/20 22:34	5
1,1-Dichloroethene	ND		5.0	1.5	ug/L			06/29/20 22:34	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery 107	Qualifier	Limits				Prepared	Analyzed 06/29/20 22:34	Dil Fac
		Qualifier					Prepared		Dil Fac 5 5

75 - 123

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Dibromofluoromethane (Surr)

Method: 625.1 - Semivolatile Analyte	Organic Compounds (GC Result Qualifier	C/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene		100		ug/L		06/29/20 16:29		10
1,2-Dichlorobenzene	ND	100	50	-		06/29/20 16:29		10
1,2-Diphenylhydrazine	ND	100		ug/L ug/L		06/29/20 16:29		10
1,3-Dichlorobenzene	ND	100				06/29/20 16:29		10
	ND			ug/L				
1,4-Dichlorobenzene		100		ug/L		06/29/20 16:29		10
2,2'-oxybis[1-chloropropane]	ND	50				06/29/20 16:29		10
2,4,6-Trichlorophenol	ND	50	10	ug/L		06/29/20 16:29		10
2,4-Dichlorophenol	ND	50	7.7	ug/L		06/29/20 16:29		10
2,4-Dimethylphenol	ND	50	14	ug/L		06/29/20 16:29		10
2,4-Dinitrophenol	ND	100		ug/L		06/29/20 16:29		10
2,4-Dinitrotoluene	ND	100		ug/L		06/29/20 16:29		10
2,6-Dinitrotoluene	ND	50		ug/L		06/29/20 16:29		10
2-Chloronaphthalene	ND	50	9.1	ug/L		06/29/20 16:29		10
2-Chlorophenol	ND	50	6.6	ug/L		06/29/20 16:29		10
2-Nitrophenol	ND	50		ug/L		06/29/20 16:29	06/30/20 13:39	10
3,3'-Dichlorobenzidine	ND	50		ug/L		06/29/20 16:29	06/30/20 13:39	10
4,6-Dinitro-2-methylphenol	ND	100	6.6	ug/L		06/29/20 16:29	06/30/20 13:39	10
4-Bromophenyl phenyl ether	ND	50	14	ug/L		06/29/20 16:29	06/30/20 13:39	10
4-Chloro-3-methylphenol	ND	50	11	ug/L		06/29/20 16:29	06/30/20 13:39	10
4-Chlorophenyl phenyl ether	ND	50	13	ug/L		06/29/20 16:29	06/30/20 13:39	10
4-Nitrophenol	ND	150	100	ug/L		06/29/20 16:29	06/30/20 13:39	10
Acenaphthene	12 J	50	8.1	ug/L		06/29/20 16:29	06/30/20 13:39	10
Acenaphthylene	ND	50	8.7	ug/L		06/29/20 16:29	06/30/20 13:39	10
Anthracene	ND	50	14	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzidine	ND *1	800	350	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzo[a]anthracene	ND	50	11	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzo[a]pyrene	ND	50	13	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzo[b]fluoranthene	ND	50	12	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzo[g,h,i]perylene	ND	50	15	ug/L		06/29/20 16:29	06/30/20 13:39	10
Benzo[k]fluoranthene	ND	50	13	ug/L		06/29/20 16:29	06/30/20 13:39	10
Bis(2-chloroethoxy)methane	ND	50	7.5	ug/L		06/29/20 16:29	06/30/20 13:39	10
Bis(2-chloroethyl)ether	ND	50	9.3	ug/L		06/29/20 16:29	06/30/20 13:39	10
Bis(2-ethylhexyl) phthalate	33 J	100		ug/L		06/29/20 16:29	06/30/20 13:39	10
Butyl benzyl phthalate	ND	50		ug/L		06/29/20 16:29	06/30/20 13:39	10
Chrysene	ND	50		ug/L		06/29/20 16:29		10
Dibenz(a,h)anthracene	ND	50		ug/L		06/29/20 16:29	06/30/20 13:39	10
Diethyl phthalate	ND	50		ug/L		06/29/20 16:29		10
Dimethyl phthalate	ND	50		Ū		06/29/20 16:29		10
Di-n-butyl phthalate	ND	50		ug/L		06/29/20 16:29		10
			.0					

Eurofins TestAmerica, Buffalo

Matrix: Water

Lab Sample ID: 480-171773-2

06/29/20 22:34

5

Page 15 of 54

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate	ND		50	12	ug/L		06/29/20 16:29	06/30/20 13:39	10
Fluoranthene	ND		50	16	ug/L		06/29/20 16:29	06/30/20 13:39	10
Fluorene	11	J	50	10	ug/L		06/29/20 16:29	06/30/20 13:39	10
Hexachlorobenzene	ND		50	10	ug/L		06/29/20 16:29	06/30/20 13:39	10
Hexachlorobutadiene	ND		50	10	ug/L		06/29/20 16:29	06/30/20 13:39	10
Hexachlorocyclopentadiene	ND		100	50	ug/L		06/29/20 16:29	06/30/20 13:39	10
Hexachloroethane	ND		50	6.0	ug/L		06/29/20 16:29	06/30/20 13:39	10
Indeno[1,2,3-cd]pyrene	ND		50	15	ug/L		06/29/20 16:29	06/30/20 13:39	10
Isophorone	ND		50	7.4	ug/L		06/29/20 16:29	06/30/20 13:39	10
Naphthalene	ND		50	8.6	ug/L		06/29/20 16:29	06/30/20 13:39	10
Nitrobenzene	ND		50	8.1	ug/L		06/29/20 16:29	06/30/20 13:39	10
N-Nitrosodimethylamine	ND		100	50	ug/L		06/29/20 16:29	06/30/20 13:39	10
N-Nitrosodi-n-propylamine	ND		50	8.9	ug/L		06/29/20 16:29	06/30/20 13:39	10
N-Nitrosodiphenylamine	ND		50	4.0	ug/L		06/29/20 16:29	06/30/20 13:39	10
Pentachlorophenol	ND		100	16	ug/L		06/29/20 16:29	06/30/20 13:39	10
Phenanthrene	ND		50	12	ug/L		06/29/20 16:29	06/30/20 13:39	10
Phenol	ND		50	3.5	ug/L		06/29/20 16:29	06/30/20 13:39	10
Pyrene	ND		50	14	ug/L		06/29/20 16:29	06/30/20 13:39	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	94		52 - 151				06/29/20 16:29	06/30/20 13:39	10
2-Fluorobiphenyl	82		44 - 120				06/29/20 16:29	06/30/20 13:39	10
2-Fluorophenol	43		17 - 120				06/29/20 16:29	06/30/20 13:39	10
Nitrobenzene-d5	78		15_314				06/29/20 16:29	06/30/20 13:39	10

8 - 424

22 - 125

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

30

88

Phenol-d5

p-Terphenyl-d14 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		10	0.46	ug/L		06/30/20 15:20	07/01/20 12:56	1
2,4-Dinitrotoluene	ND		5.0	0.45	ug/L		06/30/20 15:20	07/01/20 12:56	1
2,4,5-Trichlorophenol	ND	*	5.0	0.48	ug/L		06/30/20 15:20	07/01/20 12:56	1
2,4,6-Trichlorophenol	ND	*	5.0	0.61	ug/L		06/30/20 15:20	07/01/20 12:56	1
2-Methylphenol	2.6	J	5.0	0.40	ug/L		06/30/20 15:20	07/01/20 12:56	1
3-Methylphenol	ND		10	0.40	ug/L		06/30/20 15:20	07/01/20 12:56	1
4-Methylphenol	ND		10	0.36	ug/L		06/30/20 15:20	07/01/20 12:56	1
Hexachlorobenzene	ND		5.0	0.51	ug/L		06/30/20 15:20	07/01/20 12:56	1
Hexachlorobutadiene	ND		5.0	0.68	ug/L		06/30/20 15:20	07/01/20 12:56	1
Hexachloroethane	ND		5.0	0.59	ug/L		06/30/20 15:20	07/01/20 12:56	1
Nitrobenzene	ND		5.0	0.29	ug/L		06/30/20 15:20	07/01/20 12:56	1
Pentachlorophenol	ND		10	2.2	ug/L		06/30/20 15:20	07/01/20 12:56	1
Pyridine	ND		25	0.41	ug/L		06/30/20 15:20	07/01/20 12:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	148	X	41 - 120				06/30/20 15:20	07/01/20 12:56	1
2-Fluorobiphenyl	116		48 - 120				06/30/20 15:20	07/01/20 12:56	1
2-Fluorophenol (Surr)	80		35 - 120				06/30/20 15:20	07/01/20 12:56	1
Nitrobenzene-d5 (Surr)	112		46 - 120				06/30/20 15:20	07/01/20 12:56	1
p-Terphenyl-d14 (Surr)	118		60 - 148				06/30/20 15:20	07/01/20 12:56	1
Phenol-d5 (Surr)	60		22 - 120				06/30/20 15:20	07/01/20 12:56	1

5 6

Lab Sample ID: 480-171773-2 Matrix: Water

06/29/20 16:29 06/30/20 13:39

06/29/20 16:29 06/30/20 13:39

10

Client Sample Results

RL

MDL Unit

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Analyte

Phenolics, Total Recoverable

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Result Qualifier

Lab Sample ID: 480-171773-2 Matrix: Water

Dil Fac

Analyzed

Prepared

D

							-	•	
PCB-1016	ND		0.060	0.038	ug/L		07/01/20 15:48	07/03/20 03:18	1
PCB-1221	ND		0.060	0.038	ug/L		07/01/20 15:48	07/03/20 03:18	1
PCB-1232	ND		0.060	0.038	ug/L		07/01/20 15:48	07/03/20 03:18	1
PCB-1242	ND		0.060	0.038	ug/L		07/01/20 15:48	07/03/20 03:18	1
PCB-1248	ND		0.060	0.038	-		07/01/20 15:48	07/03/20 03:18	1
PCB-1254	ND		0.060	0.031	ug/L		07/01/20 15:48	07/03/20 03:18	1
PCB-1260	ND		0.060	0.031	0		07/01/20 15:48	07/03/20 03:18	1
					•				
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	25	X	36 - 121				07/01/20 15:48	07/03/20 03:18	1
Tetrachloro-m-xylene (Surr)	57		42 - 135				07/01/20 15:48	07/03/20 03:18	1
Method: 1631E - Mercury, Low			-		11	_	D	• · · · • · · · · ·	D 11 F
Analyte		Qualifier	RL 0.50		Unit	D	Prepared 07/01/20 11:00	Analyzed 07/06/20 11:59	Dil Fac
Mercury	3.8		0.50	0.14	ng/L		07/01/20 11.00	07/06/20 11.59	I
Method: 200.7 Rev 4.4 - Metals									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056			06/29/20 09:18	06/29/20 18:19	1
Chromium	0.0022	J	0.0040	0.0010	-		06/29/20 09:18	06/29/20 18:19	1
Iron	1.3	•	0.050	0.019	-			06/29/20 18:19	1
Lead	0.0047	J	0.010	0.0030				06/29/20 18:19	
		-							
Method: 200.7 Rev 4.4 - Metals	(ICP) - Dis	solved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	ND		0.015	0.0056	mg/L		07/02/20 09:03	07/02/20 16:40	1
Chromium, Dissolved	ND		0.0040	0.0010	mg/L		07/02/20 09:03	07/02/20 16:40	1
Iron, Dissolved	ND		0.050	0.019	mg/L		07/02/20 09:03	07/02/20 16:40	1
Lead, Dissolved	ND		0.010	0.0030	mg/L		07/02/20 09:03	07/02/20 16:40	1
<u>с</u> Г									
Method: 6010C - Metals (ICP)						_			
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	-		07/02/20 10:00	07/02/20 20:35	1
Barium	0.034	^	0.0020	0.00070	0		07/02/20 10:00	07/02/20 20:35	1
Cadmium	ND		0.0020	0.00050				07/02/20 20:35	1
Chromium	0.0021		0.0040	0.0010	-			07/02/20 20:35	1
Lead	0.0040	J	0.010	0.0030	0			07/02/20 20:35	1
Selenium	ND		0.025	0.0087				07/02/20 20:35	1
Silver	ND		0.0060	0.0017	mg/L		07/02/20 10:00	07/02/20 20:35	1
Method: 7470A - Mercury (CVA		Qualifiar	Ы	МП	Unit	_	Bronorod	Analyzad	Dil Eso
Analyte Mercury	ND	Qualifier	RL 0.00020	0.00012	Unit	D	Prepared 06/30/20 12:40	Analyzed 06/30/20 18:55	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		00/30/20 12.40	00/30/20 10.55	I
General Chemistry									
Analyte	Result	Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fac
Oil & Grease	2.9		4.8		mg/L		06/29/20 16:43	06/30/20 19:40	1
Fluoride	0.17	-	0.10	0.052	-			06/30/20 17:51	2
Cyanide, Total	ND		0.010	0.0050	-		06/30/20 11:22	06/30/20 12:47	1
Chemical Oxygen Demand	858		100		mg/L		55,55,20 11.22	07/01/20 17:59	10
onennical Oxygen Demanu	000		100	50.0	ing/L			51/01/20 11.39	10

Eurofins TestAmerica, Buffalo

07/02/20 15:48

0.010

0.0035 mg/L

0.040

Client Sample Results

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Job ID: 480-171773-1

Lab Sample ID: 480-171773-2 Matrix: Water

General Chemistry (Continued) Dil Fac Analyte RL MDL Unit **Result Qualifier** D Prepared Analyzed **Total Dissolved Solids** 387 10.0 4.0 mg/L 06/30/20 14:57 1 Chromium, hexavalent ND H 0.010 0.0050 mg/L 06/27/20 11:02 1 Ferrous Iron ND HF 0.10 0.075 mg/L 06/27/20 15:55 1 **Biochemical Oxygen Demand** 99.6 b 60.0 60.0 mg/L 06/27/20 06:33 1 24.0 24.0 mg/L 06/27/20 06:33 1 **Carbonaceous Biochemical** 98.8 b **Oxygen Demand** 07/02/20 20:34 4.0 1.7 mg/L **Total Organic Carbon** 183 4 **Result Qualifier** RL **RL** Unit Dil Fac Analyte D Prepared Analyzed 4.0 4.0 mg/L 06/27/20 11:05 **Total Suspended Solids** 16.4 1 7.5 HF 0.1 0.1 SU 06/30/20 14:03 1 pН 0.001 Degrees C 0.001 06/30/20 14:03 Temperature 19.3 HF 1

7/7/2020

Surrogate Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 624.1 - Volatile Organic Compounds (GC/MS)

latrix: Water						Prep Type: Total/N
-			Pe	ercent Surro	ogate Recover	ry (Acceptance Limits)
		DCA	BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)	
480-171773-1	GEOBAG FILTRATE	103	101	103	101	
480-171773-2	FILTER PRESS FILTRATE	99	99	102	96	
LCS 480-538351/5	Lab Control Sample	101	103	100	100	
MB 480-538351/7	Method Blank	101	101	103	97	
Surrogate Legend						
DCA = 1,2-Dichloroe	hane-d4 (Surr)					
BFB = 4-Bromofluoro	benzene (Surr)					
DBFM = Dibromofluo	romethane (Surr)					
TOL = Toluene-d8 (S	urr)					

Method: 8260C - Volatile Organic Compounds by GC/MS **Matrix: Water**

			_		
			Pe	ercent Surro	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)
480-171773-1	GEOBAG FILTRATE	112	106	94	108
480-171773-2	FILTER PRESS FILTRATE	107	106	97	106
LCS 480-538566/5	Lab Control Sample	108	109	96	110
MB 480-538566/7	Method Blank	110	105	96	111

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) Matrix: Water

Prep Type: Total/NA

Prep Type: Total/NA

_					Percent Surrogate Recovery (Acceptance Limits						
		TBP	FBP	2FP	NBZ	PHL	TPHd14				
Lab Sample ID	Client Sample ID	(52-151)	(44-120)	(17-120)	(15-314)	(8-424)	(22-125)				
480-171773-1	GEOBAG FILTRATE	94	88	39	76	28	67				
480-171773-2	FILTER PRESS FILTRATE	94	82	43	78	30	88				
LCS 480-538584/2-A	Lab Control Sample	121	85	50	87	35	108				
LCSD 480-538584/3-A	Lab Control Sample Dup	110	86	46	85	33	107				
MB 480-538584/1-A	Method Blank	110	89	51	92	35	109				

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPHd14 = p-Terphenyl-d14 (Surr)

Surrogate Summary

FBP

(48-120)

98

116

105

106

2FP

(35-120)

75

80

84

79

TBP

(41-120)

137 X

148 X

130 X

104

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Client Sample ID

GEOBAG FILTRATE

Lab Control Sample

Method Blank

FILTER PRESS FILTRATE

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Matrix: Water

Lab Sample ID

480-171773-1

480-171773-2

Matrix: Water

LCS 480-538762/2-A

MB 480-538762/1-A

Surrogate Legend

FBP = 2-Fluorobiphenyl 2FP = 2-Fluorophenol (Surr) NBZ = Nitrobenzene-d5 (Surr) TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

Percent Surrogate Recovery (Acceptance Limits)

NBZ (46-120)

104

112

105

104

TPHd14

(60-148)

89

118

112

112

PHL

(22-120)

53

60

65

56

5
7
8
9

Prep Type: Total/NA

-			Per	rcent Surrogate Recovery (Acceptance Limits)	
		DCBP1	TCX1		13
Lab Sample ID	Client Sample ID	(36-121)	(42-135)		13
480-171773-1	GEOBAG FILTRATE	20 X	42		
480-171773-2	FILTER PRESS FILTRATE	25 X	57		
LCS 480-538962/2-A	Lab Control Sample	43	72		
LCSD 480-538962/3-A	Lab Control Sample Dup	44	65		
MB 480-538962/1-A	Method Blank	47	71		
1					

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene (Surr)

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 624.1 - Volatile Organic Compounds (GC/MS)

ND

ND

ND

ND

ND

ND

Lab Sample ID: MB 480-538351/7 **Matrix: Water** Analysis

Methylene Chloride

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Toluene

Watth, Water								Fieh Type. It		
Analysis Batch: 538351										Ì
Anglista		MB	RL	MDI	Unit		Drenered	Analyzad		
Analyte		Qualifier				<u>D</u>	Prepared	Analyzed	Dil Fac	
1,1,1-Trichloroethane	ND		5.0		ug/L			06/27/20 14:04	1	
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			06/27/20 14:04	1	
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			06/27/20 14:04	1	
1,1-Dichloroethane	ND		5.0	0.59	ug/L			06/27/20 14:04	1	2
1,1-Dichloroethene	ND		5.0	0.85	ug/L			06/27/20 14:04	1	
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			06/27/20 14:04	1	
1,2-Dichloroethane	ND		5.0	0.60	ug/L			06/27/20 14:04	1	
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			06/27/20 14:04	1	
1,2-Dichloropropane	ND		5.0	0.61	ug/L			06/27/20 14:04	1	
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			06/27/20 14:04	1	
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			06/27/20 14:04	1	
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			06/27/20 14:04	1	
Acrolein	ND		100	17	ug/L			06/27/20 14:04	1	
Acrylonitrile	ND		50	1.9	ug/L			06/27/20 14:04	1	
Benzene	ND		5.0	0.60	ug/L			06/27/20 14:04	1	ï
Bromoform	ND		5.0	0.47	ug/L			06/27/20 14:04	1	
Bromomethane	ND		5.0	1.2	ug/L			06/27/20 14:04	1	i
Carbon tetrachloride	ND		5.0	0.51	ug/L			06/27/20 14:04	1	
Chlorobenzene	ND		5.0	0.48	ug/L			06/27/20 14:04	1	
Chlorodibromomethane	ND		5.0	0.41	ug/L			06/27/20 14:04	1	
Chloroethane	ND		5.0	0.87	ug/L			06/27/20 14:04	1	
Chloroform	ND		5.0	0.54	ug/L			06/27/20 14:04	1	
Chloromethane	ND		5.0	0.64	ug/L			06/27/20 14:04	1	
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			06/27/20 14:04	1	
Dichlorobromomethane	ND		5.0	0.54	ug/L			06/27/20 14:04	1	
Ethylbenzene	ND		5.0	0.46	ug/L			06/27/20 14:04	1	

Vinyl chloride	ND		5.0	0.75 ug/L		06/27/20 14:04	1
	MB	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		68 - 130			06/27/20 14:04	1
4-Bromofluorobenzene (Surr)	101		76 - 123			06/27/20 14:04	1
Dibromofluoromethane (Surr)	103		75 - 123			06/27/20 14:04	1
Toluene-d8 (Surr)	97		77 - 120			06/27/20 14:04	1

5.0

5.0

5.0

5.0

5.0

5.0

0.81 ug/L

0.34 ug/L

0.45 ug/L

0.59 ug/L

0.44 ug/L

0.60 ug/L

Lab Sample ID: LCS 480-538351/5 Matrix: Water Analysis Batch: 538351

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	19.3		ug/L		96	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	19.6		ug/L		98	46 - 157	
1,1,2-Trichloroethane	20.0	20.0		ug/L		100	52 - 150	

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

06/27/20 14:04

06/27/20 14:04

06/27/20 14:04

06/27/20 14:04

06/27/20 14:04

06/27/20 14:04

Prep Type: Total/NA

Client Sample ID: Method Blank

1

1

1

1

1

1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Job ID: 480-171773-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

2 3 4

	Method: 624.1 - Volat	ile Organic Compounds	(GC/MS) (Continued)
--	-----------------------	-----------------------	---------------------

Lab Sample ID: LCS 480-538351/5 Matrix: Water

Analysis Batch: 538351			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane			20.0	19.0		ug/L		95	59 - 155	
1,1-Dichloroethene			20.0	19.6		ug/L		98	1 - 234	
1,2-Dichlorobenzene			20.0	19.4		ug/L		97	18 ₋ 190	
1,2-Dichloroethane			20.0	18.6		ug/L		93	49 ₋ 155	
1,2-Dichloropropane			20.0	18.8		ug/L		94	1_210	
1,3-Dichlorobenzene			20.0	18.9		ug/L		95	59 ₋ 156	
1,4-Dichlorobenzene			20.0	19.0		ug/L		95	18 - 190	
2-Chloroethyl vinyl ether			20.0	19.7	J	ug/L		99	1 _ 305	
Benzene			20.0	19.1		ug/L		96	37 ₋ 151	
Bromoform			20.0	19.6		ug/L		98	45 ₋ 169	
Bromomethane			20.0	19.1		ug/L		95	1 _ 242	
Carbon tetrachloride			20.0	19.4		ug/L		97	70 - 140	
Chlorobenzene			20.0	18.9		ug/L		95	37 - 160	
Chlorodibromomethane			20.0	19.2		ug/L		96	53 - 149	
Chloroethane			20.0	19.5		ug/L		98	14 - 230	
Chloroform			20.0	18.9		ug/L		95	51 - 138	
Chloromethane			20.0	18.5		ug/L		93	1 - 273	
cis-1,3-Dichloropropene			20.0	19.2		ug/L		96	1 _ 227	
Dichlorobromomethane			20.0	18.9		ug/L		94	35 - 155	
Ethylbenzene			20.0	19.3		ug/L		96	37 - 162	
Methylene Chloride			20.0	18.1		ug/L		90	1 _ 221	
Tetrachloroethene			20.0	19.2		ug/L		96	64 - 148	
Toluene			20.0	19.1		ug/L		96	47 - 150	
trans-1,2-Dichloroethene			20.0	18.9		ug/L		94	54 - 156	
trans-1,3-Dichloropropene			20.0	19.5		ug/L		97	17 - 183	
Trichloroethene			20.0	18.8		ug/L		94	71 ₋ 157	
Vinyl chloride			20.0	19.0		ug/L		95	1 - 251	
	LCS	LCS								
Surrogate	%Recovery		Limits							
1,2-Dichloroethane-d4 (Surr)	101		68 - 130							
4-Bromofluorobenzene (Surr)	103		76 - 123							
Dibromofluoromethane (Surr)	100		75 - 123							

Method: 8260C - Volatile Organic Compounds by GC/MS

100

Lab Sample ID: MB 480-538566/7 Matrix: Water Analysis Batch: 538566

Toluene-d8 (Surr)

Client Sample ID: Method Blank Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND		1.0	0.21	ug/L			06/29/20 17:07	1
2-Butanone (MEK)	ND		10	1.3	ug/L			06/29/20 17:07	1
Benzene	ND		1.0	0.41	ug/L			06/29/20 17:07	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			06/29/20 17:07	1
Chlorobenzene	ND		1.0	0.75	ug/L			06/29/20 17:07	1
Chloroform	ND		1.0	0.34	ug/L			06/29/20 17:07	1
Tetrachloroethene	ND		1.0	0.36	ug/L			06/29/20 17:07	1
Trichloroethene	ND		1.0	0.46	ug/L			06/29/20 17:07	1

77 - 120

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-538566/7 Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA Analysis Batch: 538566

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		1.0	0.90	ug/L			06/29/20 17:07	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			06/29/20 17:07	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		77 - 120					06/29/20 17:07	1
4-Bromofluorobenzene (Surr)	105		73 - 120					06/29/20 17:07	1
Toluene-d8 (Surr)	96		80 - 120					06/29/20 17:07	1
Dibromofluoromethane (Surr)	111		75 - 123					06/29/20 17:07	1

Lab Sample ID: LCS 480-538566/5 Matrix: Water Analysis Batch: 538566

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	25.0	27.5		ug/L		110	75 - 120	
2-Butanone (MEK)	125	126		ug/L		101	57 - 140	
Benzene	25.0	21.8		ug/L		87	71 - 124	
Carbon tetrachloride	25.0	29.4		ug/L		118	72 - 134	
Chlorobenzene	25.0	22.8		ug/L		91	80 - 120	
Chloroform	25.0	25.1		ug/L		100	73 - 127	
Tetrachloroethene	25.0	24.7		ug/L		99	74 - 122	
Trichloroethene	25.0	23.8		ug/L		95	74 ₋ 123	
Vinyl chloride	25.0	25.1		ug/L		100	65 - 133	
1,1-Dichloroethene	25.0	23.9		ug/L		96	66 - 127	
LCS	S LCS							

	LUS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		77 - 120
4-Bromofluorobenzene (Surr)	109		73 - 120
Toluene-d8 (Surr)	96		80 - 120
Dibromofluoromethane (Surr)	110		75 - 123

Method: 625.1 - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-538584/1-A Matrix: Water Analysis Batch: 538685

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		10	0.82	ug/L		06/29/20 16:29	06/30/20 11:38	1
1,2-Dichlorobenzene	ND		10	5.0	ug/L		06/29/20 16:29	06/30/20 11:38	1
1,2-Diphenylhydrazine	ND		10	0.78	ug/L		06/29/20 16:29	06/30/20 11:38	1
1,3-Dichlorobenzene	ND		10	0.69	ug/L		06/29/20 16:29	06/30/20 11:38	1
1,4-Dichlorobenzene	ND		10	5.6	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,2'-oxybis[1-chloropropane]	ND		5.0	0.84	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,4,6-Trichlorophenol	ND		5.0	1.0	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,4-Dichlorophenol	ND		5.0	0.77	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,4-Dimethylphenol	ND		5.0	1.4	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,4-Dinitrophenol	ND		10	5.0	ug/L		06/29/20 16:29	06/30/20 11:38	1

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 538584

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

7/7/2020

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-538584/1-A **Matrix: Water** Analysis Batch: 538685

Pyrene

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 538584

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrotoluene	ND		10	5.0	ug/L		06/29/20 16:29	06/30/20 11:38	1
2,6-Dinitrotoluene	ND		5.0	1.0	ug/L		06/29/20 16:29	06/30/20 11:38	1
2-Chloronaphthalene	ND		5.0	0.91	ug/L		06/29/20 16:29	06/30/20 11:38	1
2-Chlorophenol	ND		5.0	0.66	ug/L		06/29/20 16:29	06/30/20 11:38	1
2-Nitrophenol	ND		5.0	0.70	ug/L		06/29/20 16:29	06/30/20 11:38	1
3,3'-Dichlorobenzidine	ND		5.0	0.82	ug/L		06/29/20 16:29	06/30/20 11:38	1
4,6-Dinitro-2-methylphenol	ND		10	0.66	ug/L		06/29/20 16:29	06/30/20 11:38	1
4-Bromophenyl phenyl ether	ND		5.0	1.4	ug/L		06/29/20 16:29	06/30/20 11:38	1
4-Chloro-3-methylphenol	ND		5.0	1.1	ug/L		06/29/20 16:29	06/30/20 11:38	1
4-Chlorophenyl phenyl ether	ND		5.0	1.3	ug/L		06/29/20 16:29	06/30/20 11:38	1
4-Nitrophenol	ND		15	10	ug/L		06/29/20 16:29	06/30/20 11:38	1
Acenaphthene	ND		5.0	0.81	ug/L		06/29/20 16:29	06/30/20 11:38	1
Acenaphthylene	ND		5.0	0.87	ug/L		06/29/20 16:29	06/30/20 11:38	1
Anthracene	ND		5.0	1.4	ug/L		06/29/20 16:29	06/30/20 11:38	1
Benzidine	ND		80	35	ug/L		06/29/20 16:29	06/30/20 11:38	1
Benzo[a]anthracene	ND		5.0	1.1	ug/L		06/29/20 16:29	06/30/20 11:38	1
Benzo[a]pyrene	ND		5.0		•		06/29/20 16:29	06/30/20 11:38	1
Benzo[b]fluoranthene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Benzo[g,h,i]perylene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Benzo[k]fluoranthene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Bis(2-chloroethoxy)methane	ND		5.0	0.75	-		06/29/20 16:29	06/30/20 11:38	1
Bis(2-chloroethyl)ether	ND		5.0	0.93	-		06/29/20 16:29	06/30/20 11:38	1
Bis(2-ethylhexyl) phthalate	ND		10		ug/L		06/29/20 16:29	06/30/20 11:38	1
Butyl benzyl phthalate	ND		5.0	1.1	ug/L		06/29/20 16:29	06/30/20 11:38	1
Chrysene	ND		5.0		0		06/29/20 16:29	06/30/20 11:38	1
Dibenz(a,h)anthracene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Diethyl phthalate	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Dimethyl phthalate	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Di-n-butyl phthalate	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Di-n-octyl phthalate	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Fluoranthene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Fluorene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Hexachlorobenzene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Hexachlorobutadiene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Hexachlorocyclopentadiene	ND		10		ug/L		06/29/20 16:29	06/30/20 11:38	1
Hexachloroethane	ND		5.0	0.60				06/30/20 11:38	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/L		06/29/20 16:29	06/30/20 11:38	1
Isophorone	ND		5.0	0.74			06/29/20 16:29	06/30/20 11:38	1
Naphthalene	ND		5.0	0.86	-		06/29/20 16:29		1
Nitrobenzene	ND		5.0	0.81	-		06/29/20 16:29		1
N-Nitrosodimethylamine	ND		10		ug/L		06/29/20 16:29		1
N-Nitrosodi-n-propylamine	ND		5.0	0.89	-		06/29/20 16:29		1
N-Nitrosodiphenylamine	ND		5.0	0.40	-		06/29/20 16:29		1
Pentachlorophenol	ND		10		ug/L		06/29/20 16:29		1
Phenanthrene	ND		5.0		ug/L		06/29/20 16:29		1
Phenol	ND		5.0	0.35	ug/L		06/29/20 16:29	06/30/20 11:38	1

06/29/20 16:29 06/30/20 11:38

5.0

1.4 ug/L

ND

1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-538584/1-A Matrix: Water Analysis Batch: 538685

Client Sample ID: Lab Control Sample

Job ID: 480-171773-1

Prep Type: Total/NA

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	110		52 - 151	06/29/20 16:29	06/30/20 11:38	1
2-Fluorobiphenyl	89		44 - 120	06/29/20 16:29	06/30/20 11:38	1
2-Fluorophenol	51		17 - 120	06/29/20 16:29	06/30/20 11:38	1
Nitrobenzene-d5	92		15-314	06/29/20 16:29	06/30/20 11:38	1
Phenol-d5	35		8 - 424	06/29/20 16:29	06/30/20 11:38	1
p-Terphenyl-d14 (Surr)	109		22 - 125	06/29/20 16:29	06/30/20 11:38	1

Lab Sample ID: LCS 480-538584/2-A Matrix: Water Analysis Batch: 538685

Analysis Batch: 538685	Spike	LCS	LCS			Prep Batch: 538584 %Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
1,2,4-Trichlorobenzene	50.0	39.3		ug/L	79	44 - 142
1,2-Dichlorobenzene	50.0	34.7		ug/L	69	32 - 129
1,2-Diphenylhydrazine	50.0	50.2		ug/L	100	47 - 146
1,3-Dichlorobenzene	50.0	32.3		ug/L	65	1 - 172
1,4-Dichlorobenzene	50.0	33.6		ug/L	67	20 - 124
2,2'-oxybis[1-chloropropane]	50.0	40.9		ug/L	82	36 - 166
2,4,6-Trichlorophenol	50.0	52.8		ug/L	106	37 - 144
2,4-Dichlorophenol	50.0	48.9		ug/L	98	39 - 135
2,4-Dimethylphenol	50.0	47.6		ug/L	95	32 - 120
2,4-Dinitrophenol	100	125		ug/L	125	1 - 191
2,4-Dinitrotoluene	50.0	52.7		ug/L	105	39 - 139
2,6-Dinitrotoluene	50.0	51.8		ug/L	104	50 - 158
2-Chloronaphthalene	50.0	43.9		ug/L	88	60 - 120
2-Chlorophenol	50.0	39.9		ug/L	80	23 - 134
2-Nitrophenol	50.0	51.3		ug/L	103	29 - 182
3,3'-Dichlorobenzidine	100	108		ug/L	108	1 - 262
4,6-Dinitro-2-methylphenol	100	115		ug/L	115	1 - 181
4-Bromophenyl phenyl ether	50.0	51.7		ug/L	103	53 - 127
4-Chloro-3-methylphenol	50.0	51.3		ug/L	103	22 - 147
4-Chlorophenyl phenyl ether	50.0	48.1		ug/L	96	25 - 158
4-Nitrophenol	100	51.6		ug/L	52	1 - 132
Acenaphthene	50.0	47.0		ug/L	94	47 - 145
Acenaphthylene	50.0	47.7		ug/L	95	33 - 145
Anthracene	50.0	52.0		ug/L	104	27 - 133
Benzidine	100	36.5	J	ug/L	36	1 - 120
Benzo[a]anthracene	50.0	50.8		ug/L	102	33 - 143
Benzo[a]pyrene	50.0	51.9		ug/L	104	17 - 163
Benzo[b]fluoranthene	50.0	52.1		ug/L	104	24 - 159
Benzo[g,h,i]perylene	50.0	52.6		ug/L	105	1 - 219
Benzo[k]fluoranthene	50.0	52.1		ug/L	104	11 - 162
Bis(2-chloroethoxy)methane	50.0	44.4		ug/L	89	33 - 184
Bis(2-chloroethyl)ether	50.0	40.7		ug/L	81	12 - 158
Bis(2-ethylhexyl) phthalate	50.0	53.5		ug/L	107	8 - 158
Butyl benzyl phthalate	50.0	54.7		ug/L	109	1 - 152
Chrysene	50.0	49.9		ug/L	100	17 - 168
Dibenz(a,h)anthracene	50.0	53.1		ug/L	106	1 _ 227

Batch: 538584

8

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Job ID: 480-171773-1

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-538584/2-A Matrix: Water				Client Sample ID: Lab Control Sample Prep Type: Total/NA					
Analysis Batch: 538685						Prep Batc			
Analysis Batch. 000000	Spike	LCS	LCS			%Rec.	1. 000004		
Analyte	Added		Qualifier	Unit	D %Rec	Limits			
Diethyl phthalate	50.0	50.7		ug/L		1 - 120			
Dimethyl phthalate	50.0	49.2		ug/L	98	1 - 120			
Di-n-butyl phthalate	50.0	55.1		ug/L	110	1 - 120			
Di-n-octyl phthalate	50.0	55.2		ug/L	110	4 - 146			
Fluoranthene	50.0	53.7		ug/L	107	26 - 137			
Fluorene	50.0	47.3		ug/L	95	59 ₋ 121			
Hexachlorobenzene	50.0	51.5		ug/L	103	1 - 152			
Hexachlorobutadiene	50.0	38.3		ug/L	77	24 - 120			
Hexachlorocyclopentadiene	50.0	42.5		ug/L	85	5 - 120			
Hexachloroethane	50.0	33.9		ug/L	68	40 - 120			
Indeno[1,2,3-cd]pyrene	50.0	53.8		ug/L	108	1 ₋ 171			
Isophorone	50.0	47.1		ug/L	94	21 - 196			
Naphthalene	50.0	41.7		ug/L	83	21 - 133			
Nitrobenzene	50.0	44.5		ug/L	89	35 - 180			
N-Nitrosodimethylamine	50.0	22.8		ug/L	46	19 - 120			
N-Nitrosodi-n-propylamine	50.0	45.0		ug/L	90	1 - 230			
N-Nitrosodiphenylamine	50.0	52.2		ug/L	104	54 - 125			
Pentachlorophenol	100	117		ug/L	117	14 ₋ 176			
Phenanthrene	50.0	50.6		ug/L	101	54 - 120			
Phenol	50.0	19.7		ug/L	39	5 - 120			
Pyrene	50.0	50.6		ug/L	101	52 - 120			

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	121		52 - 151
2-Fluorobiphenyl	85		44 - 120
2-Fluorophenol	50		17 - 120
Nitrobenzene-d5	87		15-314
Phenol-d5	35		8 - 424
p-Terphenyl-d14 (Surr)	108		22 - 125

Lab Sample ID: LCSD 480-538584/3-A Matrix: Water Analysis Batch: 538685

Analysis Batch: 538685							Prep Ba	-	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	50.0	40.4		ug/L		81	44 - 142	3	34
1,2-Dichlorobenzene	50.0	34.9		ug/L		70	32 - 129	0	38
1,2-Diphenylhydrazine	50.0	49.6		ug/L		99	47 - 146	1	20
1,3-Dichlorobenzene	50.0	33.5		ug/L		67	1 - 172	4	37
1,4-Dichlorobenzene	50.0	34.0		ug/L		68	20 - 124	1	40
2,2'-oxybis[1-chloropropane]	50.0	39.1		ug/L		78	36 - 166	4	36
2,4,6-Trichlorophenol	50.0	54.0		ug/L		108	37 - 144	2	20
2,4-Dichlorophenol	50.0	48.4		ug/L		97	39 - 135	1	23
2,4-Dimethylphenol	50.0	46.1		ug/L		92	32 - 120	3	18
2,4-Dinitrophenol	100	127		ug/L		127	1 _ 191	1	29
2,4-Dinitrotoluene	50.0	53.7		ug/L		107	39 - 139	2	20
2,6-Dinitrotoluene	50.0	52.9		ug/L		106	50 - 158	2	17
2-Chloronaphthalene	50.0	44.9		ug/L		90	60 - 120	2	30

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

5

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-538 Matrix: Water Analysis Batch: 538685	3584/3-A			(Client Sa	ample ID: L	Prep T	I Sample ype: Tot Batch: 5	tal/NA
Analyte		Spike Added		LCSD Qualifier	Unit	D %Re	%Rec.	RPD	RPD Limit
2-Chlorophenol		50.0	38.6		ug/L	7	7 23 - 134	4	26
2-Nitrophenol		50.0	48.8		ug/L	g	8 29 - 182	5	28
3,3'-Dichlorobenzidine		100	106		ug/L	10	6 1_262	2	31
4,6-Dinitro-2-methylphenol		100	113		ug/L	11	3 1_181	2	30
4-Bromophenyl phenyl ether		50.0	50.4		ug/L	10	1 53 - 127	3	16
4-Chloro-3-methylphenol		50.0	48.6		ug/L	g	7 22 - 147	5	16
4-Chlorophenyl phenyl ether		50.0	48.0		ug/L	g	6 25 - 158	0	15
4-Nitrophenol		100	51.2		ug/L	5	1 1_132	1	24
Acenaphthene		50.0	47.4		ug/L	g	5 47 - 145	1	25
Acenaphthylene		50.0	48.0		ug/L	g	6 33 - 145	1	22
Anthracene		50.0	49.6		ug/L	g	9 27 - 133	5	15
Benzidine		100	61.3	J *1	ug/L	6	1 1 - 120	51	50
Benzo[a]anthracene		50.0	50.5		ug/L	10	1 33 - 143	1	15
Benzo[a]pyrene		50.0	53.0		ug/L	10	6 17 - 163	2	15
Benzo[b]fluoranthene		50.0	56.9		ug/L	11	4 24 - 159	9	17
Benzo[g,h,i]perylene		50.0	52.8		ug/L	10	6 1_219	0	19
Benzo[k]fluoranthene		50.0	49.5		ug/L	g	9 11 - 162	5	19
Bis(2-chloroethoxy)methane		50.0	45.3		ug/L	g	1 33 - 184	2	23
Bis(2-chloroethyl)ether		50.0	40.1		ug/L	8	0 12 - 158	1	33
Bis(2-ethylhexyl) phthalate		50.0	54.0		ug/L	10	8 8 - 158	1	15
Butyl benzyl phthalate		50.0	53.3		ug/L	10	7 1_152	3	15
Chrysene		50.0	50.2		ug/L	10	0 17 - 168	0	15
Dibenz(a,h)anthracene		50.0	53.1		ug/L	10	6 1_227	0	18
Diethyl phthalate		50.0	50.9		ug/L	10	2 1_120	0	15
Dimethyl phthalate		50.0	50.0		ug/L	10	0 1 - 120	2	15
Di-n-butyl phthalate		50.0	54.1		ug/L	10	8 1 - 120	2	15
Di-n-octyl phthalate		50.0	56.1		ug/L	11	2 4 - 146	2	15
Fluoranthene		50.0	51.8		ug/L	10	4 26 - 137	4	15
Fluorene		50.0	48.4		ug/L	g	7 59 - 121	2	18
Hexachlorobenzene		50.0	49.3		ug/L	g	9 1_152	4	15
Hexachlorobutadiene		50.0	38.0		ug/L	7	6 24 - 120	1	50
Hexachlorocyclopentadiene		50.0	43.3		ug/L	8	7 5 - 120	2	50
Hexachloroethane		50.0	33.1		ug/L	6	6 40 - 120	2	43
Indeno[1,2,3-cd]pyrene		50.0	53.4		ug/L	10		1	17
Isophorone		50.0	45.8		ug/L	g	2 21 - 196	3	21
Naphthalene		50.0	41.3		ug/L	8	3 21 - 133	1	31
Nitrobenzene		50.0	43.1		ug/L	8	6 35 - 180	3	27
N-Nitrosodimethylamine		50.0	21.8		ug/L	4	4 19_120	5	22
N-Nitrosodi-n-propylamine		50.0	43.9		ug/L	8	8 1-230	3	23
N-Nitrosodiphenylamine		50.0	49.8		ug/L	10	0 54 - 125	5	15
Pentachlorophenol		100	115		ug/L	11	5 14 - 176	2	2
Phenanthrene		50.0	49.4		ug/L	g	9 54 - 120	2	16
Phenol		50.0	18.8		ug/L		8 5 - 120		36
Pyrene		50.0	50.2		ug/L	10			15
	LCSD LCSD								
Surrogate %	Recoverv Qualifier	Limits							

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	110		52 - 151
2-Fluorobiphenyl	86		44 - 120

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Matrix: Water

Surrogate

Phenol-d5

Analyte

2-Fluorophenol

Nitrobenzene-d5

p-Terphenyl-d14 (Surr)

Matrix: Water

1,4-Dichlorobenzene

2,4,5-Trichlorophenol

2,4,6-Trichlorophenol

2,4-Dinitrotoluene

2-Methylphenol

3-Methylphenol

4-Methylphenol

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Pentachlorophenol

Nitrobenzene

Pvridine

Analysis Batch: 538875

Analysis Batch: 538685

Method: 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

ND

ND

ND

Lab Sample ID: LCSD 480-538584/3-A **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA Prep Batch: 538584 LCSD LCSD %Recovery Qualifier Limits 17 - 120 46 85 15-314 8 - 424 33 107 22 - 125 8 Method: 8270D - Semivolatile Organic Compounds (GC/MS) Lab Sample ID: MB 480-538762/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 538762 MB MB MDL Unit Result Qualifier RL D Prepared Analyzed Dil Fac 06/30/20 15:20 07/01/20 11:29 ND 10 0.46 ug/L 1 ND 5.0 0.45 ug/L 06/30/20 15:20 07/01/20 11:29 1 ND 5.0 0.48 ug/L 06/30/20 15:20 07/01/20 11:29 1 ND 5.0 0.61 ug/L 06/30/20 15:20 07/01/20 11:29 1 ND 5.0 0.40 ug/L 06/30/20 15:20 07/01/20 11:29 1 ND 10 06/30/20 15:20 07/01/20 11:29 0.40 ug/L 1 ND 10 06/30/20 15:20 07/01/20 11:29 0.36 ug/L 1 ND 5.0 06/30/20 15:20 07/01/20 11:29 0.51 ug/L 1 06/30/20 15:20 07/01/20 11:29 ND 5.0 0.68 ug/L 1 ND 5.0 0.59 ug/L 06/30/20 15:20 07/01/20 11:29 1

,				0			
	MB	МВ					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	104		41 - 120		06/30/20 15:20	07/01/20 11:29	1
2-Fluorobiphenyl	106		48 - 120		06/30/20 15:20	07/01/20 11:29	1
2-Fluorophenol (Surr)	79		35 - 120		06/30/20 15:20	07/01/20 11:29	1
Nitrobenzene-d5 (Surr)	104		46 - 120		06/30/20 15:20	07/01/20 11:29	1
p-Terphenyl-d14 (Surr)	112		60 - 148		06/30/20 15:20	07/01/20 11:29	1
Phenol-d5 (Surr)	56		22 - 120		06/30/20 15:20	07/01/20 11:29	1

5.0

10

25

0.29 ug/L

2.2 ug/L

0.41 ug/L

Lab Sample ID: LCS 480-538762/2-A Matrix: Water Analysis Batch: 538875

Client Sample ID: Lab Control Sample Prep Type: Total/NA

06/30/20 15:20 07/01/20 11:29

06/30/20 15:20 07/01/20 11:29

06/30/20 15:20 07/01/20 11:29

Prep Batch: 538762

Spike	LCS	LCS				%Rec.
Added	Result	Qualifier	Unit	D	%Rec	Limits
32.0	29.8		ug/L		93	51 - 120
32.0	35.7		ug/L		112	69 - 120
32.0	41.8	*	ug/L		131	65 - 126
32.0	39.3	*	ug/L		123	64 - 120
32.0	32.8		ug/L		102	39 - 120
32.0	31.2		ug/L		98	39 - 120
32.0	31.2		ug/L		97	29 - 131
32.0	35.5		ug/L		111	61 - 120
32.0	33.3		ug/L		104	35 - 120
	Added 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0	Added Result 32.0 29.8 32.0 35.7 32.0 41.8 32.0 39.3 32.0 32.8 32.0 31.2 32.0 31.2 32.0 35.5	Added Result Qualifier 32.0 29.8 32.0 32.0 35.7 32.0 32.0 35.7 32.0 32.0 39.3 * 32.0 32.8 32.0 32.0 31.2 32.0 32.0 31.2 32.0 32.0 35.5 5	Added Result Qualifier Unit 32.0 29.8 ug/L ug/L 32.0 35.7 ug/L 32.0 35.7 ug/L 32.0 31.2 ug/L 32.0 31.2 ug/L 32.0 31.2 ug/L 32.0 35.5 ug/L	Added Result Qualifier Unit D 32.0 29.8 ug/L ug/L ug/L 32.0 35.7 ug/L ug/L 32.0 41.8 * ug/L 32.0 39.3 * ug/L 32.0 31.2 ug/L 32.0 31.2 ug/L 32.0 35.5 ug/L	Added Result Qualifier Unit D %Rec 32.0 29.8 ug/L ug/L 112 32.0 35.7 ug/L 112 32.0 41.8 * ug/L 131 32.0 39.3 * ug/L 123 32.0 39.3 * ug/L 102 32.0 32.8 ug/L 102 32.0 31.2 ug/L 98 32.0 31.2 ug/L 97 32.0 35.5 ug/L 111

Eurofins TestAmerica, Buffalo

Job ID: 480-171773-1

1

1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-538762/2-A Matrix: Water Analysis Batch: 538875				Clie	Client Sample ID: Lab Control S Prep Type: To Prep Batch: 5				
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Hexachloroethane	32.0	28.5		ug/L		89	43 - 120		
Nitrobenzene	32.0	33.5		ug/L		105	53 - 123		
Pentachlorophenol	64.0	64.2		ug/L		100	29 - 136		
Pyridine	64.0	34.6		ug/L		54	10 - 120		
LCS LCS									

	200	200	
Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	130	X	41 - 120
2-Fluorobiphenyl	105		48 - 120
2-Fluorophenol (Surr)	84		35 - 120
Nitrobenzene-d5 (Surr)	105		46 - 120
p-Terphenyl-d14 (Surr)	112		60 - 148
Phenol-d5 (Surr)	65		22 - 120

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC)

Lab Sample ID: MB 480-538962/1-A Matrix: Water Analysis Batch: 539133

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.060	0.038	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1221	ND		0.060	0.038	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1232	ND		0.060	0.038	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1242	ND		0.060	0.038	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1248	ND		0.060	0.038	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1254	ND		0.060	0.031	ug/L		07/01/20 15:48	07/02/20 22:20	1
PCB-1260	ND		0.060	0.031	ug/L		07/01/20 15:48	07/02/20 22:20	1
	MB	МВ							
	MB								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	47		36 - 121
Tetrachloro-m-xylene (Surr)	71		42 - 135

Lab Sample ID: LCS 480-538962/2-A Matrix: Water Analysis Batch: 539133

Analysis Batch: 539133			Spike	LCS	LCS				Prep Ba %Rec.	atch: 538962
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016			1.00	0.978		ug/L		98	69 - 123	
PCB-1260			1.00	0.905		ug/L		91	69 - 120	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							

Surrogate	%Recovery	Qualifier	LIMITS
DCB Decachlorobiphenyl	43		36 - 121
Tetrachloro-m-xylene (Surr)	72		42 - 135

1

1

Job ID: 480-171773-1

Client Sample ID: Method Blank

07/01/20 15:48 07/02/20 22:20

07/01/20 15:48 07/02/20 22:20

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 538962

Prep Type: Total/NA

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

5

8

Method: 608.3 - Polychlorinated Biphenyls (PCBs) (GC) (Continued)

Lab Sample ID: LCSD 480 Matrix: Water Analysis Batch: 539133	-538962/3-A		Spike	LCSD	LCSD	Client Sa	ample	ID: Lat	D Control S Prep Tyl Prep Ba %Rec.	pe: Tot	al/NA
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016			1.00	0.953		ug/L		95	69 - 123	3	30
PCB-1260			1.00	0.899		ug/L		90	69 - 120	1	30
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
DCB Decachlorobiphenyl	44		36 - 121								
Tetrachloro-m-xylene (Surr)	65		42 - 135								

Method: 1631E - Mercury, Low Level (CVAFS)

Lab Sample ID: MB 240-4408 Matrix: Water Analysis Batch: 441110		МВ					Clie		ple ID: Method Prep Type: T Prep Batch:	otal/NA
Analyte	Result	Qualifier	RL	I	MDL Unit	D	Р	repared	Analyzed	Dil Fac
Mercury	ND		0.50		0.14 ng/L		07/0	1/20 11:00	07/02/20 10:32	1
Lab Sample ID: LCS 240-440 Matrix: Water Analysis Batch: 441110	889/2-A					Clien	t Sai		Lab Control S Prep Type: To Prep Batch:	otal/NA
·		S	pike	LCS	LCS				%Rec.	
Analyte		Ad	ded	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury			5.00	4.96		ng/L		99	77 - 123	

Lab Sample ID: 480-171773-1 MS	
Matrix: Water	
Analysis Batch: 1/1337	

Analysis Batch: 441337									Ргер ва	tcn: 440889
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	35.1		10.0	44.32		ng/L		92	71 - 125	

Lab Sample ID: 480-171773-1 MSD Matrix: Water						Cli	ent Sar	nple ID	: GEOBA Prep Ty			
	Analysis Batch: 441337	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec.		
	Analyte Mercury	Result 35.1	Qualifier	Added	Result 44.26	Qualifier	Unit ng/L	<u>D</u>	%Rec 91	Limits 71 - 125	RPD	Limit 24

Method: 200.7 Rev 4.4 - Metals (ICP)

Lab Sample ID: MB 480-5384 Matrix: Water Analysis Batch: 538638	51/1-A MB MB						le ID: Method Prep Type: To Prep Batch: 8	otal/NA
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	0.015	0.0056	mg/L		06/29/20 09:18	06/29/20 18:00	1
Chromium	ND	0.0040	0.0010	mg/L		06/29/20 09:18	06/29/20 18:00	1
Iron	ND	0.050	0.019	mg/L		06/29/20 09:18	06/29/20 18:00	1
Lead	ND	0.010	0.0030	mg/L		06/29/20 09:18	06/29/20 18:00	1

Eurofins TestAmerica, Buffalo

Client Sample ID: GEOBAG FILTRATE

Prep Type: Total/NA

LCS LCS

0.209

0.207

10.26

0.203

Result Qualifier

MDL Unit

0.0056 mg/L

0.0010 mg/L 0.019 mg/L

0.0030 mg/L

Unit

mg/L

mg/L

mg/L

mg/L

п

Spike

Added

0.200

0.200

0.200

MB MB

ND

ND

ND

ND

Result Qualifier

10.0

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Lab Sample ID: LCS 480-538451/2-A

Lab Sample ID: MB 480-538744/1-C

Matrix: Water

Matrix: Water

Arsenic, Dissolved

Iron, Dissolved

Lead, Dissolved

Chromium, Dissolved

Analyte

Arsenic

Iron

Lead

Analyte

Chromium

Analysis Batch: 538638

Analysis Batch: 539257

Method: 200.7 Rev 4.4 - Metals (ICP) (Continued)

Prep Type: Total/NA

Prep Batch: 538451

8 **Client Sample ID: Method Blank Prep Type: Dissolved** Prep Batch: 538920 Dil Fac

Fiepaieu	Analyzeu	Dirrac
 07/02/20 09:03	07/02/20 16:03	1
07/02/20 09:03	07/02/20 16:03	1
07/02/20 09:03	07/02/20 16:03	1
07/02/20 09:03	07/02/20 16:03	1

Client Sample ID: Lab Control Sample

Analyzod

Prep Type: Dissolved

Client Sample ID: Lab Control Sample

D %Rec

104

103

103

102

Pronarod

%Rec.

Limits

85 - 115

85 - 115

85 - 115 85 - 115

Lab Sample ID: LCS 480-538744/2-C Matrix: Water Analysis Batch: 539257

Analysis Batch: 539257	Spike	LCS	LCS				Prep Batch: 538920 %Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic, Dissolved	0.200	0.203		mg/L		101	85 - 115	
Chromium, Dissolved	0.200	0.201		mg/L		100	85 - 115	
Iron, Dissolved	10.0	10.00		mg/L		100	85 - 115	
Lead, Dissolved	0.200	0.197		mg/L		99	85 - 115	

RL

0.015

0.0040

0.050

0.010

Lab Sample ID: 480-171773-1 MS **Matrix: Water** Analysis Ratch: 539257

Analysis Balch: 539257	Sample	Sample	Spike	MS	MS				Ярер Ба %Rec.	atch: 536920
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic, Dissolved	ND		0.200	0.207		mg/L		104	70 - 130	
Chromium, Dissolved	ND		0.200	0.199		mg/L		99	70 - 130	
Iron, Dissolved	ND		10.0	9.92		mg/L		99	70 - 130	
Lead, Dissolved	ND		0.200	0.199		mg/L		99	70 - 130	

Lab Sample ID: 480-171773-1 MSD Matrix: Water Analysis Batch: 539257

Client Sample ID: GEOBAG FILTRATE Prep Type: Dissolved Prop Batch: 538920

Client Sample ID: GEOBAG FILTRATE
Prep Type: Dissolved

Pren Batch: 538920

Analysis Datch: 539257									Ргер Ба	atch: 53	0920	
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Arsenic, Dissolved	ND		0.200	0.212		mg/L		106	70 - 130	2	20	
Chromium, Dissolved	ND		0.200	0.199		mg/L		100	70 - 130	0	20	
Iron, Dissolved	ND		10.0	9.98		mg/L		100	70 - 130	1	20	
Lead, Dissolved	ND		0.200	0.200		mg/L		100	70 - 130	1	20	

Lab Sample ID: MB 480-539037/1-A Matrix: Water Analysis Batch: 539260

Analysis Batch: 539260								Prep Batch:	539037
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		07/02/20 10:00	07/02/20 19:21	1
Barium	ND	۸	0.0020	0.00070	mg/L		07/02/20 10:00	07/02/20 19:21	1
Cadmium	ND		0.0020	0.00050	mg/L		07/02/20 10:00	07/02/20 19:21	1
Chromium	ND		0.0040	0.0010	mg/L		07/02/20 10:00	07/02/20 19:21	1
Lead	ND		0.010	0.0030	mg/L		07/02/20 10:00	07/02/20 19:21	1
Selenium	ND		0.025	0.0087	mg/L		07/02/20 10:00	07/02/20 19:21	1
Silver	ND		0.0060	0.0017	mg/L		07/02/20 10:00	07/02/20 19:21	1

Lab Sample ID: LCS 480-539037/2-A Matrix: Water

Analysis Batch: 539260

Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	-	LCS				Prep Batch: 539037 %Rec.	11
Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.200	0.202		mg/L		101	80 - 120	12
0.200	0.211	۸	mg/L		106	80 - 120	
0.200	0.198		mg/L		99	80 - 120	13
0.200	0.200		mg/L		100	80 - 120	
0.200	0.195		mg/L		98	80 - 120	14
0.200	0.195		mg/L		97	80 - 120	
0.0500	0.0482		mg/L		96	80 - 120	15

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-538722 Matrix: Water	/ 1-A							С	lie		ole ID: Metho Prep Type: T	
Analysis Batch: 538883											Prep Batch:	538722
	MB	MB										
Analyte	Result	Qualifier	RL	. I	MDL (Unit		D	Pr	repared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00	0012 r	mg/L		_ 00	6/30	0/20 12:40	06/30/20 18:51	1
 Lab Sample ID: LCS 480-53872	2/2-A						Clie	ent S	San	nple ID:	Lab Control	Sample
Lab Sample ID: LCS 480-53872 Matrix: Water	2/2-A						Clie	ent S	San		Lab Control S Prep Type: T	
Matrix: Water	2/2-A						Clie	ent S	San		Prep Type: T	otal/NA
•	2/2-A		Spike	LCS	LCS		Clie	ent S	San			otal/NA
Matrix: Water	2/2-A		Spike Added	LCS Result		ifier	Clie				Prep Type: T Prep Batch:	otal/NA

Method: 1664B - HEM and SGT-HEM

Lab Sample ID: MB 480-538587/′ Matrix: Water Analysis Batch: 538602		мв						le ID: Methoo Prep Type: To Prep Batch:	otal/NA
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Oil & Grease	ND		5.0	1.4	mg/L		06/29/20 16:43	06/30/20 19:40	1

7/7/2020

Prep Type: Total/NA

Client Sample ID: Method Blank

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc. Job ID: 480-171773-1

5

8

Method: 1664B - HEM and SGT-HEM (Continued)

Lab Sample ID: LCS 480-538587/2-A Matrix: Water Analysis Batch: 538602	0 11			Clie	ent Sar	nple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 538587
	Spike		LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Oil & Grease	40.0	34.00		mg/L		85	78 - 114

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-538674/4 Matrix: Water									C	Clie	nt Sam	ple ID: Metho Prep Type: 1	
Analysis Batch: 538674													
-	MB	MB											
Analyte	Result	Qualifier		RL	I	MDL	Unit		D	Pr	repared	Analyzed	Dil Fac
Fluoride	ND			0.050	0	.026	mg/L					06/30/20 13:22	2 1
Lab Sample ID: LCS 480-538674/3	5							C	lient \$	San	nple ID:	Lab Control	Sample
Matrix: Water												Prep Type: 1	Fotal/NA
Analysis Batch: 538674													
			Spike		LCS	LCS	;					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Fluoride			5.00		4.63			mg/L		_	93	90 - 110	
Lab Sample ID: 480-171773-2 MS							Cl	ient S	ampl	e IC	D: FILTE	ER PRESS FI	LTRATE
Matrix: Water												Prep Type: 1	Total/NA
Analysis Batch: 538674													
Sar	nple Sa	mple	Spike		MS	MS						%Rec.	
Analyte Re	sult Qu	alifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Fluoride	0.17		10.0		9.50			mg/L		_	93	82 - 120	
lethod: 335.4 - Cyanide, Tot	al												

Lab Sample ID: MB 480-538713/1-/ Matrix: Water Analysis Batch: 538730									CI	ient		ole ID: Metho Prep Type: Prep Batch	Total/NA
Analyte		MB Qualifier		RL	1	MDL	Unit		D	Prep	bared	Analyzed	Dil Fac
Cyanide, Total	ND			0.010	0.0	0050	mg/L		_ 06	/30/2	20 11:22	06/30/20 12:1	8 1
Lab Sample ID: LCS 480-538713/2-	A							Clie	ent Sa	amp	ole ID:	Lab Contro	l Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 538730												Prep Batch	: 538713
			Spike		LCS	LCS	;					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit	C) %	Rec	Limits	
Cyanide, Total			0.400		0.423			mg/L			106	90 - 110	
Lab Sample ID: LCS 480-538713/3-	A							Clie	ent Sa	amp	ole ID:	Lab Contro	Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 538730												Prep Batch	: 538713
-			Spike		LCS	LCS	;					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit	C) %	Rec	Limits	
Cyanide, Total			0.250		0.255			mg/L			102	90 - 110	

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Method: 410.4 - COD

Job ID: 480-171773-1

Lab Sample ID: MB 480-538470/52 Matrix: Water										Clie	nt Sam	ple ID: Metho Prep Type: 1	
Analysis Batch: 538470													
-		MB											
Analyte		Qualifier		RL		MDL			D	Pr	epared	Analyzed	Dil Fa
Chemical Oxygen Demand	ND			10.0		5.0	mg/L					06/28/20 06:29	
Lab Sample ID: LCS 480-538470/53								CI	ient	San	nple ID:	Lab Control	Sample
Matrix: Water												Prep Type: 1	otal/N
Analysis Batch: 538470													
			Spike		LCS	LCS	i					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit		D	%Rec	Limits	
Chemical Oxygen Demand			25.0		25.60			mg/L			102	90 - 110	
Lab Sample ID: MB 480-539130/4										Clie	nt Sam	ple ID: Metho	d Blan
Matrix: Water												Prep Type: 1	
Analysis Batch: 539130													
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed	Dil Fa
Chemical Oxygen Demand	ND			10.0		5.0	mg/L					07/01/20 17:59	
Lab Sample ID: LCS 480-539130/5								CI	ient	San	n <mark>ple ID</mark> :	Lab Control	
Matrix: Water												Prep Type: 1	otal/N
Analysis Batch: 539130			Spike		1.05	LCS						%Rec.	
							,					/011000.	
Analyte			•			Оца	lifier	Unit		п	%Rec	l imits	
Analyte Chemical Oxygen Demand			Added 25.0		Result 24.36	Qua	lifier	Unit mg/L		<u>D</u>	%Rec 97	Limits 90 - 110	
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44	al Re	covera	Added 25.0		Result	Qua	lifier			·	97	90 - 110 ple ID: Metho	
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water	al Re	covera	Added 25.0		Result	Qua	lifier			·	97	90 - 110	
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water		COVERA	Added 25.0		Result	Qua	lifier			·	97	90 - 110 ple ID: Metho	
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178	МВ		Added 25.0	 	Result 24.36	Qua			D	Clie	97	90 - 110 ple ID: Metho	otal/N
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte	МВ	МВ	Added 25.0	RL 0.010	Result 24.36	MDL				Clie	97	90 - 110 ple ID: Metho Prep Type: 1	F <mark>otal/N</mark> Dil Fa
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45	MB Result ND	МВ	Added 25.0		Result 24.36	MDL	Unit	mg/L	<u>D</u>	Clie Pr	97 nt Sam epared	90 - 110 ple ID: Metho Prep Type: 7 Analyzed 07/02/20 14:39 : Lab Control	Dil Fa
Chemical Oxygen Demand Aethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water	MB Result ND	МВ	Added 25.0		Result 24.36	MDL	Unit	mg/L	<u>D</u>	Clie Pr	97 nt Sam epared	90 - 110 ple ID: Metho Prep Type: 7 Analyzed 07/02/20 14:39	Dil Fa
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45	MB Result ND	МВ	Added 25.0		Result 24.36	MDL	Unit mg/L	mg/L	<u>D</u>	Clie Pr	97 nt Sam epared	90 - 110 ple ID: Metho Prep Type: 7 Analyzed 07/02/20 14:39 : Lab Control	Dil Fa
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178 Analysis Batch: 539178	MB Result ND	МВ	Added 25.0 ble Spike Added		Result 24.36	MDL 0035	Unit mg/L	mg/L	<u>D</u>	Clie Pr San	97 nt Sam epared nple ID: %Rec	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:36 : Lab Control Prep Type: 1 %Rec. Limits	Dil Fa
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178	MB Result ND	МВ	Added 25.0 ble		Result 24.36	MDL 0035	Unit mg/L	mg/L	<u>D</u>	Clie Pr San	97 nt Sam epared nple ID:	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:38 : Lab Control Prep Type: 1 %Rec.	Dil Fa
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178 Analysis Batch: 539178 Analyte Phenolics, Total Recoverable	MB Result ND	MB Qualifier	Added 25.0 ble Spike Added 0.100	0.010	Result 24.36	MDL 0035	Unit mg/L	CI Unit	<u>D</u>	Clie Pr San	97 nt Sam epared nple ID: %Rec	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:36 : Lab Control Prep Type: 1 %Rec. Limits	Dil Fa
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Method: SM 2540C - Solids, Total Lab Sample ID: MB 480-538756/1	MB Result ND	MB Qualifier	Added 25.0 ble Spike Added 0.100	0.010	Result 24.36	MDL 0035	Unit mg/L	CI Unit	D ient	Clie Pr San	97 nt Sam epared nple ID: <u>%Rec</u> 101	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:36 : Lab Control Prep Type: 1 %Rec. Limits	Dil Fa Dil Fa Sampl Fotal/N
Chemical Oxygen Demand Method: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Method: SM 2540C - Solids, To Lab Sample ID: MB 480-538756/1 Matrix: Water	MB Result ND	MB Qualifier	Added 25.0 ble Spike Added 0.100	0.010	Result 24.36	MDL 0035	Unit mg/L	CI Unit	D ient	Clie Pr San	97 nt Sam epared nple ID: <u>%Rec</u> 101	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:39 : Lab Control Prep Type: 1 %Rec. Limits 90 - 110 ple ID: Metho	Dil Fa Dil Fa Sampl Fotal/N/
Chemical Oxygen Demand Iethod: 420.4 - Phenolics, Tot Lab Sample ID: MB 480-539178/44 Matrix: Water Analysis Batch: 539178 Analyte Phenolics, Total Recoverable Lab Sample ID: LCS 480-539178/45 Matrix: Water Analysis Batch: 539178 Analysis Batch: 539178	MB Result ND	MB Qualifier	Added 25.0 ble Spike Added 0.100	0.010	Result 24.36	MDL 0035 Qua	Unit mg/L	CI Unit	D ient	Clie Pr San D Clie	97 nt Sam epared nple ID: <u>%Rec</u> 101	90 - 110 ple ID: Metho Prep Type: 1 Analyzed 07/02/20 14:39 : Lab Control Prep Type: 1 %Rec. Limits 90 - 110 ple ID: Metho	Dil Fa Dil Fa Sample Total/N/

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc. Job ID: 480-171773-1

Dil Fac

Dil Fac

RPD

Limit

15

1

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued) **Client Sample ID: Lab Control Sample** Lab Sample ID: LCS 480-538756/2 Matrix: Water Prep Type: Total/NA Analysis Batch: 538756 Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit D 85 - 115 Total Dissolved Solids 504 446.0 89 mg/L Method: SM 2540D - Solids, Total Suspended (TSS) Lab Sample ID: MB 480-538343/1 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 538343 MB MB **Result Qualifier** RL **RL Unit** Prepared Analyzed Analyte D 1.0 **Total Suspended Solids** ND 1.0 mg/L 06/27/20 11:05 Lab Sample ID: LCS 480-538343/2 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 538343 Spike LCS LCS %Rec. Analvte Added Result Qualifier Unit D %Rec Limits **Total Suspended Solids** 341 330.8 mg/L 97 88 - 110 Method: SM 3500 CR D - Chromium, Hexavalent Lab Sample ID: MB 480-538385/3 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 538385 MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed 0.010 06/27/20 11:02 Chromium, hexavalent ND 0.0050 mg/L Lab Sample ID: LCS 480-538385/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 538385 Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits D Chromium, hexavalent 0.0500 85 - 115 0.0501 mg/L 100 Lab Sample ID: 480-171773-1 DU **Client Sample ID: GEOBAG FILTRATE Matrix: Water** Prep Type: Total/NA Analysis Batch: 538385 Sample Sample DU DU **Result Qualifier** Analyte Result Qualifier Unit D RPD ND H Chromium, hexavalent ND mg/L NC Method: SM 3500 FE D - Iron, Ferrous and Ferric Lab Sample ID: MB 480-538395/3 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 538395 MB MB RL MDL Unit Analyte **Result Qualifier** D Prepared Analyzed Ferrous Iron ND 0.10 0.075 mg/L 06/27/20 15:55

Eurofins TestAmerica, Buffalo

Dil Fac

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc. Job ID: 480-171773-1

Method: SM 3500 FE D - Iron, Ferrous and Ferric (Continued)

Lab Sample ID: LCS 480-538	395/4					Clie	nt Sai	nple ID	: Lab Contr	
Matrix: Water									Prep Type	: Total/N
Analysis Batch: 538395										
			Spike		LCS		_		%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Ferrous Iron			2.00	2.01		mg/L		101	90 - 110	
Lab Sample ID: 480-171773-2 Matrix: Water	2 MS				CI	ient San	n <mark>ple I</mark>	D: FILT	ER PRESS Prep Type	
Analysis Batch: 538395										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ferrous Iron	ND	HF	2.00	1.91		mg/L		96	70 - 130	
Lab Sample ID: 480-171773-1 Matrix: Water	DU					Clier	nt Sar	nple ID	: GEOBAG Prep Type	
Analysis Batch: 538395										
· ·····	Sample	Sample		DU	DU					RF
Analyte	-	Qualifier		Result	Qualifier	Unit	D			RPD Lin
Ferrous Iron	ND	HF		ND		mg/L				NC
Lab Sample ID: 480-171773-2 Matrix: Water	2 DU				CI	ient San	n <mark>ple I</mark>	D: FILT	ER PRESS Prep Type	
Analysis Batch: 538395										
-	Sample	Sample		DU	DU					RF
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD Lin
Ferrous Iron	ND	HF		ND		mg/L				NC
Anthody CM 4500 H+ D	nH									
ietriod: Sivi 4500 H+ B -										
Lab Sample ID: LCS 480-538						Clie	nt Sai	nple ID	: Lab Contr Prep Type	
Lab Sample ID: LCS 480-538 Matrix: Water						Clie	nt Sai	nple ID	: Lab Contr Prep Type	
Lab Sample ID: LCS 480-538 Matrix: Water			Spike	LCS	LCS	Clie	nt Sai	nple ID		
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753			Spike Added	_	LCS Qualifier	Clie	nt Sai D	nple ID %Rec	Prep Type	
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte			-	_				·	Prep Type %Rec.	
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water	753/1		Added	Result		Unit SU	D	%Rec	Prep Type %Rec. Limits	: Total/Ñ
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water	753/1		Added 7.00	Result 7.0	Qualifier	Unit SU	D	%Rec	Prep Type %Rec. Limits 99-101 : Lab Contr Prep Type	: Total/Ñ
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753	753/1		Added 7.00 Spike	Result 7.0 LCS	Qualifier	Unit SU Cliet	 nt Sai	%Rec 100	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec.	: Total/Ñ
Aethod: SM 4500 H+ B - p Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte	753/1		Added 7.00 Spike Added	Result 7.0 LCS Result	Qualifier	Unit SU Cliet Unit	D	%Rec 100 mple ID %Rec	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec. Limits	: Total/Ñ
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte	753/1		Added 7.00 Spike	Result 7.0 LCS	Qualifier	Unit SU Cliet	 nt Sai	%Rec 100	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec.	: Total/Ñ
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH	753/1		Added 7.00 Spike Added	Result 7.0 LCS Result	Qualifier	Unit SU Cliet Unit	 nt Sai	%Rec 100 mple ID %Rec	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec. Limits	: Total/Ñ
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Method: SM 5210B - BOD Lab Sample ID: USB 480-538 Matrix: Water	753/1 753/23), 5-Day		Added 7.00 Spike Added	Result 7.0 LCS Result	Qualifier	Unit SU Cliet Unit	D	%Rec 100 mple ID %Rec 100	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec. Limits	: Total/N ol Samp : Total/N
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Method: SM 5210B - BOD Lab Sample ID: USB 480-538 Matrix: Water	753/1 753/23 0, 5-Day 375/1		Added 7.00 Spike Added	Result 7.0 LCS Result	Qualifier	Unit SU Cliet Unit	D	%Rec 100 mple ID %Rec 100	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec. Limits 99 - 101	: Total/N ol Samp : Total/N
Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753 Analyte pH Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538753	753/1 753/23 0, 5-Day 375/1	USB USB	Added 7.00 Spike Added	Result 7.0 LCS Result 7.0	Qualifier	Unit SU Clies Unit SU	D nt Sai D Clie	%Rec 100 mple ID %Rec 100	Prep Type %Rec. Limits 99 - 101 : Lab Contr Prep Type %Rec. Limits 99 - 101	: Total/N ol Samp : Total/N hod Blar : Total/N

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc. Job ID: 480-171773-1

Method: SM 5210B - BOD, 5-Day (Continued)

Lab Sample ID: LCS 480-538 Matrix: Water	8375/2					Clie	nt Samp	le ID:	: Lab Control S Prep Type: To	
Analysis Batch: 538375										
			Spike	LC	S LCS				%Rec.	
Analyte			Added	Resu	ult Qualifier	Unit	D %	Rec	Limits	
Biochemical Oxygen Demand			198	188	.3	mg/L		95	85 - 115	
- - - Lob Somple ID: USB 490-52	0276/4						Client	6	nia ID: Mathad	Diank
Lab Sample ID: USB 480-538	8376/1						Client	Sam	ple ID: Method	
Matrix: Water									Prep Type: To	otal/NA
Analysis Batch: 538376		JSB USB								
Analyte		sult Quali	fior	RL	MDL Unit	r	D Prep	arod	Analyzed	Dil Fac
Carbonaceous Biochemical Oxygen				2.0	2.0 mg/L			areu	06/27/20 06:33	
Demand				2.0	2.0 mg/L				00/21/20 00.00	
Lab Sample ID: LCS 480-538	8376/2					Clie	nt Samp	le ID:	: Lab Control S	Sample
Matrix: Water									Prep Type: To	otal/NA
Analysis Batch: 538376										
-			Spike	LC	S LCS				%Rec.	
Analyte			Added	Resu	ult Qualifier	Unit	D %	Rec	Limits	
Carbonaceous Biochemical			198	183	.0	mg/L		92	85 - 115	
Oxygen Demand										
- Lab Sampla ID: 490 474772	4 DU					Clier	at Sama			
Lab Sample ID: 480-171773- Matrix: Water						Cilei	n Samp	ie iD.	GEOBAG FILT Prep Type: To	
									Fiep Type. It	
Analysis Batch: 538376	Sample	Sample		г	U DU					RPD
	Campio	oumpio		-						
Analyte	Result	Qualifier		Resi	ult Qualifier	Unit	D		RPD	limi [.]
Analyte		Qualifier			ult Qualifier	Unit ma/l	D		RPD	
Analyte Carbonaceous Biochemical Oxygen Demand	Result 16.5				ult Qualifier 26 F3	Unit mg/L	<u>D</u>		RPD 53	
Carbonaceous Biochemical Oxygen Demand	16.5						D			
Carbonaceous Biochemical Oxygen Demand	16.5 C							Sam		3 20
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC	16.5 C							Sam	53	Blank
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water	16.5 C							Sam	53 ple ID: Method	Blank
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-538	16.5 C							Sam	53 ple ID: Method	Blank
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water	16.5 C 906/4	b			MDL Unit	mg/L			53 ple ID: Method	Blank
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906	16.5 C 906/4	MB MB	fier	28.	26 F3	mg/L	Client		ple ID: Method Prep Type: To	Blank Dtal/NA
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon	16.5 2 906/4 Re	MB MB sult Quali	fier	28.	MDL Unit	mg/L	Client	ared	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48	Blank Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOO Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-538	16.5 2 906/4 Re	MB MB sult Quali		28.	MDL Unit	mg/L	Client	ared	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOO Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-538 Matrix: Water	16.5 2 906/4 Re	MB MB sult Quali	fier	28.	MDL Unit	mg/L	Client	ared	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOO Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-538	16.5 2 906/4 Re	MB MB sult Quali		28. RL 1.0	MDL Unit 0.43 mg/L	mg/L	Client	ared	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S Prep Type: To	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906	16.5 2 906/4 Re	MB MB sult Quali	Spike	28.1 	MDL Unit 0.43 mg/L	mg/L	Client	ared le ID:	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S Prep Type: To %Rec.	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906 Analyte	16.5 2 906/4 Re	MB MB sult Quali	Spike Added	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L Clier Unit	Client D Prep nt Samp D %	ared le ID: Rec	53 ple ID: Method Prep Type: To 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906	16.5 2 906/4 Re	MB MB sult Quali	Spike	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L	Client D Prep nt Samp D %	ared le ID:	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S Prep Type: To %Rec.	Blank btal/NA Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-538 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon	16.5 906/4 Re 8906/5	MB MB sult Quali	Spike Added	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L Clier Unit	Client	ared le ID: Rec 102	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits 90 - 110	Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: MB 480-5399	16.5 906/4 Re 8906/5	MB MB sult Quali	Spike Added	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L Clier Unit	Client	ared le ID: Rec 102	53 ple ID: Method Prep Type: To 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits 90 - 110 ple ID: Method	Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOO Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: MB 480-5399 Matrix: Water	16.5 906/4 Re 8906/5	MB MB sult Quali	Spike Added	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L Clier Unit	Client	ared le ID: Rec 102	53 ple ID: Method Prep Type: To <u>Analyzed</u> 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits 90 - 110	Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOC Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: MB 480-5399	16.5 906/4 Re 8906/5	MB MB sult Quali	Spike Added	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	mg/L Clier Unit	Client	ared le ID: Rec 102	53 ple ID: Method Prep Type: To 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits 90 - 110 ple ID: Method	Dil Fac
Carbonaceous Biochemical Oxygen Demand Method: SM 5310C - TOO Lab Sample ID: MB 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: LCS 480-5389 Matrix: Water Analysis Batch: 538906 Analyte Total Organic Carbon Lab Sample ID: MB 480-5399 Matrix: Water	16.5 2 906/4 Re 8906/5	MB MB sult Quali	Spike Added 60.0	28.1 	MDL Unit 0.43 mg/L SS LCS ult Qualifier	Clier Unit mg/L	Client	ared le ID: Rec 102 Sam	53 ple ID: Method Prep Type: To 06/30/20 17:48 : Lab Control S Prep Type: To %Rec. Limits 90 - 110 ple ID: Method	Dil Fac

Method: SM 5310C - TOC (Continued)

Lab Sample ID: LCS 480-539191/5 Matrix: Water Analysis Batch: 539191			Client Sample ID: Lab Control Sample Prep Type: Total/N/				
Analysis Baton: 000101	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Organic Carbon	60.0	61.13		mg/L		102	90 - 110

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Water

Water

Water

Water

Matrix

Water

Water

Water

Water

Matrix

Water

Water Water

Water

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID

Method Blank

GEOBAG FILTRATE

Lab Control Sample

Client Sample ID

Method Blank

GEOBAG FILTRATE

Lab Control Sample

Client Sample ID

Method Blank

GEOBAG FILTRATE

Lab Control Sample

FILTER PRESS FILTRATE

FILTER PRESS FILTRATE

FILTER PRESS FILTRATE

GC/MS VOA

Lab Sample ID

480-171773-1

480-171773-2

MB 480-538351/7

LCS 480-538351/5

Lab Sample ID

480-171773-1

480-171773-2

MB 480-538566/7

LCS 480-538566/5

GC/MS Semi VOA

Prep Batch: 538584

Lab Sample ID

480-171773-1

480-171773-2

MB 480-538584/1-A

LCS 480-538584/2-A

Analysis Batch: 538351

Analysis Batch: 538566

Prep Batch

Prep Batch

Prep Batch

Method

624.1

624.1

624.1

624.1

Method

8260C

8260C

8260C

8260C

Method

625 625

625

625

9

LCSD 480-538584/3-A	Lab Control Sample Dup	Total/NA	Water	625	
Analysis Batch: 5386	85				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	625.1	538584
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	625.1	538584
MB 480-538584/1-A	Method Blank	Total/NA	Water	625.1	538584
LCS 480-538584/2-A	Lab Control Sample	Total/NA	Water	625.1	538584
LCSD 480-538584/3-A	Lab Control Sample Dup	Total/NA	Water	625.1	538584

Prep Batch: 538762

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	3510C	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	3510C	
MB 480-538762/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-538762/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 538875

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	8270D	538762
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	8270D	538762
MB 480-538762/1-A	Method Blank	Total/NA	Water	8270D	538762
LCS 480-538762/2-A	Lab Control Sample	Total/NA	Water	8270D	538762

GC Semi VOA

Prep Batch: 538962

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480	-171773-1	GEOBAG FILTRATE	Total/NA	Water	3510C	
480	-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	3510C	
MB	480-538962/1-A	Method Blank	Total/NA	Water	3510C	
LCS	S 480-538962/2-A	Lab Control Sample	Total/NA	Water	3510C	

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

GC Semi VOA (Continued)

Prep Batch: 538962 (Continued)

Lab Sample ID LCSD 480-538962/3-A	Client Sample ID Lab Control Sample Dup	Prep Type Total/NA	Water	Method 3510C	Prep Batch
– Analysis Batch: 5391	33				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	608.3	538962
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	608.3	538962
MB 480-538962/1-A	Method Blank	Total/NA	Water	608.3	538962
LCS 480-538962/2-A	Lab Control Sample	Total/NA	Water	608.3	538962
LCSD 480-538962/3-A	Lab Control Sample Dup	Total/NA	Water	608.3	538962

Metals

Prep Batch: 440889

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	1631E	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	1631E	
MB 240-440889/1-A	Method Blank	Total/NA	Water	1631E	
LCS 240-440889/2-A	Lab Control Sample	Total/NA	Water	1631E	
480-171773-1 MS	GEOBAG FILTRATE	Total/NA	Water	1631E	
480-171773-1 MSD	GEOBAG FILTRATE	Total/NA	Water	1631E	

Analysis Batch: 441110

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 240-440889/1-A	Method Blank	Total/NA	Water	1631E	440889
LCS 240-440889/2-A	Lab Control Sample	Total/NA	Water	1631E	440889

Analysis Batch: 441337

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	1631E	440889
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	1631E	440889
480-171773-1 MS	GEOBAG FILTRATE	Total/NA	Water	1631E	440889
480-171773-1 MSD	GEOBAG FILTRATE	Total/NA	Water	1631E	440889

Prep Batch: 538451

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	200.7	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	200.7	
MB 480-538451/1-A	Method Blank	Total/NA	Water	200.7	
LCS 480-538451/2-A	Lab Control Sample	Total/NA	Water	200.7	

Analysis Batch: 538638

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	200.7 Rev 4.4	538451
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	200.7 Rev 4.4	538451
MB 480-538451/1-A	Method Blank	Total/NA	Water	200.7 Rev 4.4	538451
LCS 480-538451/2-A	Lab Control Sample	Total/NA	Water	200.7 Rev 4.4	538451
Prep Batch: 538722					

Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch 480-171773-1 **GEOBAG FILTRATE** Total/NA Water 7470A 480-171773-2 FILTER PRESS FILTRATE Total/NA 7470A Water

Job ID: 480-171773-1

9

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Job ID: 480-171773-1

7 8 9

13 14

Metals (Continued)

Prep Batch: 538722 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-538722/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-538722/2-A	Lab Control Sample	Total/NA	Water	7470A	
iltration Batch: 538	744				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Dissolved	Water	FILTRATION	
480-171773-2	FILTER PRESS FILTRATE	Dissolved	Water	FILTRATION	
MB 480-538744/1-C	Method Blank	Dissolved	Water	FILTRATION	
LCS 480-538744/2-C	Lab Control Sample	Dissolved	Water	FILTRATION	
480-171773-1 MS	GEOBAG FILTRATE	Dissolved	Water	FILTRATION	
480-171773-1 MSD	GEOBAG FILTRATE	Dissolved	Water	FILTRATION	
nalysis Batch: 538	883				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	7470A	538722
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	7470A	538722
MB 480-538722/1-A	Method Blank	Total/NA	Water	7470A	53872
LCS 480-538722/2-A	Lab Control Sample	Total/NA	Water	7470A	53872
rep Batch: 538920					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-171773-1	GEOBAG FILTRATE	Dissolved	Water	200.7	53874
480-171773-2	FILTER PRESS FILTRATE	Dissolved	Water	200.7	53874
MB 480-538744/1-C	Method Blank	Dissolved	Water	200.7	538744
LCS 480-538744/2-C	Lab Control Sample	Dissolved	Water	200.7	538744
480-171773-1 MS	GEOBAG FILTRATE	Dissolved	Water	200.7	53874
480-171773-1 MSD	GEOBAG FILTRATE	Dissolved	Water	200.7	53874
rep Batch: 539037					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	3005A	

Analysis Batch: 539257

Method Blank

Lab Control Sample

MB 480-539037/1-A

LCS 480-539037/2-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Dissolved	Water	200.7 Rev 4.4	538920
480-171773-2	FILTER PRESS FILTRATE	Dissolved	Water	200.7 Rev 4.4	538920
MB 480-538744/1-C	Method Blank	Dissolved	Water	200.7 Rev 4.4	538920
LCS 480-538744/2-C	Lab Control Sample	Dissolved	Water	200.7 Rev 4.4	538920
480-171773-1 MS	GEOBAG FILTRATE	Dissolved	Water	200.7 Rev 4.4	538920
480-171773-1 MSD	GEOBAG FILTRATE	Dissolved	Water	200.7 Rev 4.4	538920

Total/NA

Total/NA

Water

Water

3005A

3005A

Analysis Batch: 539260

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	6010C	539037
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	6010C	539037
MB 480-539037/1-A	Method Blank	Total/NA	Water	6010C	539037
LCS 480-539037/2-A	Lab Control Sample	Total/NA	Water	6010C	539037

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

General Chemistry

Analysis Batch: 538343

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 2540D	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 2540D	
MB 480-538343/1	Method Blank	Total/NA	Water	SM 2540D	
LCS 480-538343/2	Lab Control Sample	Total/NA	Water	SM 2540D	
Analysis Batch: 538	3375				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 5210B	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 5210B	
USB 480-538375/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-538375/2	Lab Control Sample	Total/NA	Water	SM 5210B	
م. Analysis Batch: 538	3376				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 5210B	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 5210B	
USB 480-538376/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-538376/2	Lab Control Sample	Total/NA	Water	SM 5210B	
480-171773-1 DU	GEOBAG FILTRATE	Total/NA	Water	SM 5210B	
nalysis Batch: 538	3385				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 3500 CR D	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 3500 CR D	
MB 480-538385/3	Method Blank	Total/NA	Water	SM 3500 CR D	
LCS 480-538385/4	Lab Control Sample	Total/NA	Water	SM 3500 CR D	
480-171773-2 MS	FILTER PRESS FILTRATE	Total/NA	Water	SM 3500 CR D	
480-171773-1 DU	GEOBAG FILTRATE	Total/NA	Water	SM 3500 CR D	
nalysis Batch: 538	3395				
Lab Sample ID	Client Sample ID	Pren Type	Matrix	Method	Prep Batc

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 3500 FE D	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 3500 FE D	
MB 480-538395/3	Method Blank	Total/NA	Water	SM 3500 FE D	
LCS 480-538395/4	Lab Control Sample	Total/NA	Water	SM 3500 FE D	
480-171773-2 MS	FILTER PRESS FILTRATE	Total/NA	Water	SM 3500 FE D	
480-171773-1 DU	GEOBAG FILTRATE	Total/NA	Water	SM 3500 FE D	
480-171773-2 DU	FILTER PRESS FILTRATE	Total/NA	Water	SM 3500 FE D	

Analysis Batch: 538470

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	410.4	
MB 480-538470/52	Method Blank	Total/NA	Water	410.4	
LCS 480-538470/53	Lab Control Sample	Total/NA	Water	410.4	

Prep Batch: 538587

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-1	171773-1	GEOBAG FILTRATE	Total/NA	Water	1664B	
480-1	171773-2	FILTER PRESS FILTRATE	Total/NA	Water	1664B	
MB 4	80-538587/1-A	Method Blank	Total/NA	Water	1664B	
LCS	480-538587/2-A	Lab Control Sample	Total/NA	Water	1664B	

Job ID: 480-171773-1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

General Chemistry

Analysis Batch: 538602

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	1664B	538587
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	1664B	538587
MB 480-538587/1-A	Method Blank	Total/NA	Water	1664B	538587
LCS 480-538587/2-A	Lab Control Sample	Total/NA	Water	1664B	538587

Analysis Batch: 538674

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	300.0	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	300.0	
MB 480-538674/4	Method Blank	Total/NA	Water	300.0	
LCS 480-538674/3	Lab Control Sample	Total/NA	Water	300.0	
480-171773-2 MS	FILTER PRESS FILTRATE	Total/NA	Water	300.0	

Prep Batch: 538713

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	Distill/CN	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	Distill/CN	
MB 480-538713/1-A	Method Blank	Total/NA	Water	Distill/CN	
LCS 480-538713/2-A	Lab Control Sample	Total/NA	Water	Distill/CN	
LCS 480-538713/3-A	Lab Control Sample	Total/NA	Water	Distill/CN	

Analysis Batch: 538730

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	335.4	538713
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	335.4	538713
MB 480-538713/1-A	Method Blank	Total/NA	Water	335.4	538713
LCS 480-538713/2-A	Lab Control Sample	Total/NA	Water	335.4	538713
LCS 480-538713/3-A	Lab Control Sample	Total/NA	Water	335.4	538713

Analysis Batch: 538753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 4500 H+ B	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 4500 H+ B	
LCS 480-538753/1	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	
LCS 480-538753/23	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 538756

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 2540C	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 2540C	
MB 480-538756/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-538756/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 538906

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	SM 5310C	
MB 480-538906/4	Method Blank	Total/NA	Water	SM 5310C	
LCS 480-538906/5	Lab Control Sample	Total/NA	Water	SM 5310C	

9

Job ID: 480-171773-1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

General Chemistry

Analysis Batch: 539130

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	410.4	
MB 480-539130/4	Method Blank	Total/NA	Water	410.4	
LCS 480-539130/5	Lab Control Sample	Total/NA	Water	410.4	

Analysis Batch: 539178

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-1	GEOBAG FILTRATE	Total/NA	Water	420.4	
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	420.4	
MB 480-539178/44	Method Blank	Total/NA	Water	420.4	
LCS 480-539178/45	Lab Control Sample	Total/NA	Water	420.4	

Analysis Batch: 539191

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-171773-2	FILTER PRESS FILTRATE	Total/NA	Water	SM 5310C	
MB 480-539191/4	Method Blank	Total/NA	Water	SM 5310C	
LCS 480-539191/5	Lab Control Sample	Total/NA	Water	SM 5310C	

Job ID: 480-171773-1

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: GEOBAG FILTRATE Date Collected: 06/26/20 10:00 Date Received: 06/26/20 15:45

Lab Sample ID: 480-171773-1

Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		10	538351	06/27/20 20:32	LCH	TAL BUF
Total/NA	Analysis	8260C		4	538566	06/29/20 22:11	OMI	TAL BUF
Total/NA	Prep	625			538584	06/29/20 16:29		TAL BUF
Total/NA	Analysis	625.1		20	538685	06/30/20 13:15	JMM	TAL BUF
Total/NA	Prep	3510C				06/30/20 15:20		TAL BUF
Total/NA	Analysis	8270D		1		07/01/20 12:27		TAL BUF
Total/NA	Prep	3510C				07/01/20 15:48		TAL BUF
Total/NA	Analysis	608.3		1		07/03/20 03:05		TAL BUF
Total/NA	Prep	1631E		-		07/01/20 11:00		TAL CAN
Total/NA	Analysis	1631E		2		07/06/20 11:45		TAL CAN
Dissolved	Filtration	FILTRATION				06/30/20 14:12		TAL BUF
Dissolved	Prep	200.7 200.7 Dov: 4.4		1		07/02/20 09:03		TAL BUF
Dissolved	Analysis	200.7 Rev 4.4		I		07/02/20 16:22		TAL BUF
Total/NA	Prep	200.7		4		06/29/20 09:18		TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1		06/29/20 18:23		TAL BUF
Total/NA Total/NA	Prep	3005A 6010C		1		07/02/20 10:00 07/02/20 20:31		TAL BUF TAL BUF
	Analysis			1				
Total/NA Total/NA	Prep Analysis	7470A 7470A		1		06/30/20 12:40 06/30/20 18:54		TAL BUF TAL BUF
Total/NA		1664B				06/29/20 16:43		TAL BUF
Total/NA	Prep Analysis	1664B		1		06/30/20 19:40		TAL BUF
Total/NA	Analysis	300.0		1		06/30/20 17:37		TAL BUF
Total/NA	Prep	Distill/CN				06/30/20 11:22		TAL BUF
Total/NA	Analysis	335.4		1		06/30/20 12:45		TAL BUF
Total/NA	Analysis	410.4		1		06/28/20 06:50		TAL BUF
Total/NA	Analysis	420.4		1		07/02/20 15:45		TAL BUF
Total/NA	•	SM 2540C		1		06/30/20 14:57		TAL BUF
	Analysis							
Total/NA	Analysis	SM 2540D		1		06/27/20 11:05		TAL BUF
Total/NA	Analysis	SM 3500 CR D		1		06/27/20 11:02		TAL BUF
Total/NA	Analysis	SM 3500 FE D		1	538395	06/27/20 15:55	CSS	TAL BUF
Total/NA	Analysis	SM 4500 H+ B		1	538753	06/30/20 14:00	BEF	TAL BUF
Total/NA	Analysis	SM 5210B		1	538375	06/27/20 06:33	EY	TAL BUF
Total/NA	Analysis	SM 5210B		1	538376	06/27/20 06:33	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	538906	06/30/20 21:37	CLA	TAL BUF

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Batch Batch Dilution Batch Prepared Prep Type Туре Method Factor Number or Analyzed Analyst Run Lab Total/NA Analysis 624.1 10 538351 06/27/20 20:57 LCH TAL BUF Total/NA Analysis 8260C 5 538566 06/29/20 22:34 OMI TAL BUF

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-171773-2

Matrix: Water

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Client Sample ID: FILTER PRESS FILTRATE Date Collected: 06/26/20 10:30 Date Received: 06/26/20 15:45

Lab Sample ID: 480-171773-2

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	625			538584	06/29/20 16:29	ATG	TAL BUF
Total/NA	Analysis	625.1		10	538685	06/30/20 13:39	JMM	TAL BUF
Total/NA	Prep	3510C			538762	06/30/20 15:20	ATG	TAL BUF
Total/NA	Analysis	8270D		1	538875	07/01/20 12:56	JMM	TAL BUF
Total/NA	Prep	3510C			538962	07/01/20 15:48	ATG	TAL BUF
Total/NA	Analysis	608.3		1	539133	07/03/20 03:18	W1T	TAL BUF
Total/NA	Prep	1631E			440889	07/01/20 11:00	AJC	TAL CAN
Total/NA	Analysis	1631E		1	441337	07/06/20 11:59	AJC	TAL CAN
Dissolved	Filtration	FILTRATION			538744	06/30/20 14:12	KMP	TAL BUF
Dissolved	Prep	200.7			538920	07/02/20 09:03		TAL BUF
Dissolved	Analysis	200.7 Rev 4.4		1	539257	07/02/20 16:40	AMH	TAL BUF
Total/NA	Prep	200.7			538451	06/29/20 09:18		TAL BUF
Total/NA	Analysis	200.7 Rev 4.4		1	538638	06/29/20 18:19		TAL BUF
Total/NA	Prep	3005A			539037	07/02/20 10:00		TAL BUF
Total/NA	Analysis	6010C		1	539260	07/02/20 20:35	AMH	TAL BUF
Total/NA	Prep	7470A			538722	06/30/20 12:40		TAL BUF
Total/NA	Analysis	7470A		1	538883	06/30/20 18:55	BMB	TAL BUF
Total/NA	Prep	1664B			538587	06/29/20 16:43		TAL BUF
Total/NA	Analysis	1664B		1		06/30/20 19:40		TAL BUF
Total/NA	Analysis	300.0		2	538674	06/30/20 17:51	IMZ	TAL BUF
Total/NA	Prep	Distill/CN			538713	06/30/20 11:22		TAL BUF
Total/NA	Analysis	335.4		1	538730	06/30/20 12:47	JRF	TAL BUF
Total/NA	Analysis	410.4		10	539130	07/01/20 17:59	CSS	TAL BUF
Total/NA	Analysis	420.4		1	539178	07/02/20 15:48	SRA	TAL BUF
Total/NA	Analysis	SM 2540C		1	538756	06/30/20 14:57	E1T	TAL BUF
Total/NA	Analysis	SM 2540D		1	538343	06/27/20 11:05	CSS	TAL BUF
Total/NA	Analysis	SM 3500 CR D		1	538385	06/27/20 11:02	CRK	TAL BUF
Total/NA	Analysis	SM 3500 FE D		1	538395	06/27/20 15:55	CSS	TAL BUF
Total/NA	Analysis	SM 4500 H+ B		1	538753	06/30/20 14:03	BEF	TAL BUF
Total/NA	Analysis	SM 5210B		1		06/27/20 06:33		TAL BUF
Total/NA	Analysis	SM 5210B		1		06/27/20 06:33		TAL BUF
Total/NA	Analysis	SM 5310C		4		07/02/20 20:34		TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc. Job ID: 480-171773-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	F	Program	Identification Number	Expiration Date
New York	N	NELAP	10026	04-02-21
The following analytes the agency does not of		port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
335.4	Distill/CN	Water	Cyanide, Total	
624.1		Water	1,2-Dichloroethene, Total	
625.1	625	Water	1,2-Dichlorobenzene	
625.1	625	Water	1,3-Dichlorobenzene	
625.1	625	Water	1,4-Dichlorobenzene	
SM 3500 CR D		Water	Chromium, hexavalent	
SM 3500 FE D		Water	Ferrous Iron	
SM 4500 H+ B		Water	рН	
SM 4500 H+ B		Water	Temperature	

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
California	State	2927	02-23-21
Connecticut	State	PH-0590	12-31-21
Florida	NELAP	E87225	06-30-20 *
Georgia	State	4062	02-23-21
Illinois	NELAP	004498	07-31-20
lowa	State	421	06-01-21
Kansas	NELAP	E-10336	04-30-21
Kentucky (UST)	State	112225	02-23-21
Kentucky (WW)	State	KY98016	12-31-20
Minnesota	NELAP	OH00048	12-31-20
Minnesota (Petrofund)	State	3506	08-01-21
New Jersey	NELAP	OH001	06-30-21
New York	NELAP	10975	03-31-21
Ohio VAP	State	CL0024	06-05-21
Oregon	NELAP	4062	02-24-21
Pennsylvania	NELAP	68-00340	08-31-20
Texas	NELAP	T104704517-18-10	08-31-20
USDA	US Federal Programs	P330-18-00281	09-17-21
Virginia	NELAP	010101	09-14-20
Washington	State	C971	01-12-21
West Virginia DEP	State	210	12-31-20

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

-	
-	
	5
	8

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
625.1	Semivolatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
508.3	Polychlorinated Biphenyls (PCBs) (GC)	40CFR136A	TAL BUF
1631E	Mercury, Low Level (CVAFS)	EPA	TAL CAN
200.7 Rev 4.4	Metals (ICP)	EPA	TAL BUF
010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
664B	HEM and SGT-HEM	1664B	TAL BUF
0.00	Anions, Ion Chromatography	MCAWW	TAL BUF
35.4	Cyanide, Total	MCAWW	TAL BUF
10.4	COD	MCAWW	TAL BUF
20.4	Phenolics, Total Recoverable	MCAWW	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 2540D	Solids, Total Suspended (TSS)	SM	TAL BUF
SM 3500 CR D	Chromium, Hexavalent	SM	TAL BUF
SM 3500 FE D	Iron, Ferrous and Ferric	SM	TAL BUF
SM 4500 H+ B	рН	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF
SM 5310C	TOC	SM	TAL BUF
631E	Preparation, Mercury, Low Level	EPA	TAL CAN
664B	HEM and SGT-HEM (Aqueous)	1664B	TAL BUF
00.7	Preparation, Total Metals	EPA	TAL BUF
005A	Preparation, Total Metals	SW846	TAL BUF
510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF
030C	Purge and Trap	SW846	TAL BUF
25	Liquid-Liquid Extraction	40CFR136A	TAL BUF
470A	Preparation, Mercury	SW846	TAL BUF
)istill/CN	Distillation, Cyanide	None	TAL BUF
ILTRATION	Sample Filtration	None	TAL BUF

Protocol References:

1664B = EPA-821-98-002

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: Sevenson Environmental Services, Inc. Project/Site: Sevenson Environmental Services, Inc.

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-171773-1	GEOBAG FILTRATE	Water	06/26/20 10:00	06/26/20 15:45	
480-171773-2	FILTER PRESS FILTRATE	Water	06/26/20 10:30	06/26/20 15:45	

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991																	
	Sampler:	+		Lab PM:	M:					F	Carrier	Trackin	Carrier Tracking No(s)			COC No:	
Client Information	Bregory EINST	ts		Fisch	Fischer, Brian J											480-147151-32	700.1
Client Contact: James Hyzy	Phone: J			E-Mail brian	E-Mail: brian.fischer@testamericainc.com	estam	ericaiı	IC.CON	-							Page 1 of 2	
Company: Sevenson Environmental Services, Inc.								Anal	Analysis	Req	Requested	pa				Job #:	
Address: 2749 Lockport Road	Due Date Requested:	:pe						-	-		ŀ						
City: Niagara Falls	19	iys):															- 0
State, Zip: NY, 14305	nac	Quote 4 302233	13022	425						s	F 300						~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Phone:	Po #: Purchase Order not required	not required			(0			c		aoq tr	••••	480	-1717	73 CF	ain of	480-171773 Chain of Custody)3 decahvdrate
Email: jhyzy@sevenson.com	:# OM				10000		_	19/97/1	_	olutar	S - tue				34	J - DI Water	U - Acetone V - MCAA
Project Name: Sevenson Environmental Services, Inc.	Project #: 48004527				JO SƏ					riority I	Pollut		oodtaM		oujete	17. AND 18. CONT.	W - pH 4-5 Z - other (specify)
Site: New Jersey	SSOW#:				x) asi		poqta			EC - Pi	, riority	CBOD	Local I			Other:	
Samnle Identification	Samule Date	Sample Time	Sample Type (C=comp,	Matrix (W=water, S=solid, O=wastefoll,	ield Filtered Perform MS/M 1631E - Local M	ul1 - 082_0.008	M 16001 - 1.011	120.4 NP - Loca	3270D - TCLP S	IA9_809_6.808	925.1_PREC - P	5540D - TSS	5240C_Calcd - I	A0147, 7470A	356.4 - Local Mo	Total Number	Snacial Instructions/Note.
			9	Preservation Code:	X	-	0.00	10,	-	z	1000	-	1	Z	1		
Geober Filterte	06 2620	10:00		Water	2	R	10		SN		>	1	2	2	B		
E, Iten Rigs Filtite	062620	0:30		Water	2	NI	5	0	SN	N	2	N	NN	2	8		
													_				
	-																
						-		+	-	_		-	-+				
						_		+	-	-		-	-				
								-		-							
					-	+		+	+	-							
						$\left \right $											
Doccible Harrord Identification	_				Com	- 0		- 11	_			- 100				Samula Disnaced (A fee must be accorded if cannulate are addined from the disnated	1 descenter 1
le Skin Irritant	Doison B Unknown	Ц	Radiological			Retur	Return To Client	Client			Disposal By Lab	al By	Lab		Ar	Archive For	Months
, III, IV, Ot					Spec	Special Instructions/QC Requirements	ruction	ns/QC	Regu	iireme	ents:						
Empty Kit Relinquished by:		Date:			Time:						0	Method	Method of Shipment	ment:			
Relinquished by: Bregory Frist	Date/Time:	11:00		Company	<u>e</u>	Received by:	by:	Um	No	3	210	10/	0 Date		12(0/20151	45 COMPANY
Relinquistred by	Date/Time:			Company	<u>~</u>	Received by	by:						Dat	Date/Time		1	Company
Relinquished by:	Date/Time:			Company	<u>a</u>	Received by:	by:						Da	Date/Time:			Company
Custody Seals Intact: Custody Seal No.: A Yes A No					0	Cooler Temperature(s) [°] C and Other Remarks:	empera	ture(s)	C and	Other F	Remark	S:	S	9	-	オケー	I TI F
					1												Ver: 01/16/2019

7/7/2020

Chain of Custody Record

Eurofins TestAmerica, Buffalo

10 Hazelwood Unve Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991	0	Chain of Custody Record	sin cus	touy he								America
Client Information	Sampler:	First		Lab PM: Fischer, I	: er. Brian J				Carrier Tracking No(s):	king No(s):	COC No: 480-147151-32700	51-32700.2
client Contact: James Hyzy	Phone:			E-Mail: brian.	E-Mail: brian.fischer@testamericainc.com	estamer	icainc.c	mo	_		Page: Page 2 of	2
Company: Sevenson Environmental Services, Inc.							A	sis	Requested		Job #:	
Address: 2749 Lockport Road	Due Date Requested:	:p					-	-			Preservation Codes	
City: Niagara Falls State, Zp: NY 14305	TAT Requested (days): 5BD 6	ys): Buotz		48022334	- 624.1						A - HCL B - NacoH C - Zn Acetate D - Nitric Acid E - NaHSO4	M - Texane M - None ate O - ASNaO2 cid P - Na2O45 4 O - Na2SO3
Phone:	Po #: Purchase Order not required	not require	q						qd		F - MeOH G - Amchloi H - Ascorbid	
Email: jhyzy@sevenson.com	:#OM				(on	_		_	1/9-1/1C			
Project Name: Sevenson Environmental Services, Inc. Site:	Project #: 48004527 SSOW#:				D (Yes or	atiles	əsp		D)&A . 0 - 7.(f containe L-EDA Other:	C - PH 4 - V Z - other (sr
		Sample	Sample Type (C=comp,	Matrix (w=water, S=solid, O=wasterol,	ield Filtered S. Perform MS/MS 24.1_PREC - Pri	260C - TCLP Vo	664B - Oil & Gre	200 EED - Loc 500 CR_D - Loc	002 (GOM) - 7.00		otal Number o	
			Preserva	Preservation Code:	X	8 Z		-	ZZ			
Geebor Filterto	062620	N.An		Water	N	S	2	NN	N		98	
FIL Marce FILL.	Challen	02.01		Water	A (N	2 2	N N	N		20	
									_			
Possible Hazard Identification			Radiological		Samp	l	osal (/ To Clier	fee ma	/ be assessed if sar	if samples a	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	r than 1 month) Months
, III, IV, Other					Speci	al Instru	ctions/C	DC Requ	Special Instructions/QC Requirements:			
Empty Kit Relinquished by:		Date:			Time:				A Meth	Method of Shipment:		
Relinguished by: Gravers Frist Relinguished by:	Date/Time: 063.01.0 Date/Time:	00:11		Company Sevinsion Company	<u> <u>x</u> <u>x</u></u>	Received by: Received by:	MAR	A WOW	w/Ciucol	Date/Time	0[26/201	SYS company
Relinquished by:	Date/Time:			Company	α α	Received by:	4			Date/Time:	ö	Company
Custody Seals Intact: Custody Seal No :						notor Tam	- nentural	Poo Uo Io	Color Temperaturals) Of and Other Bomarke			

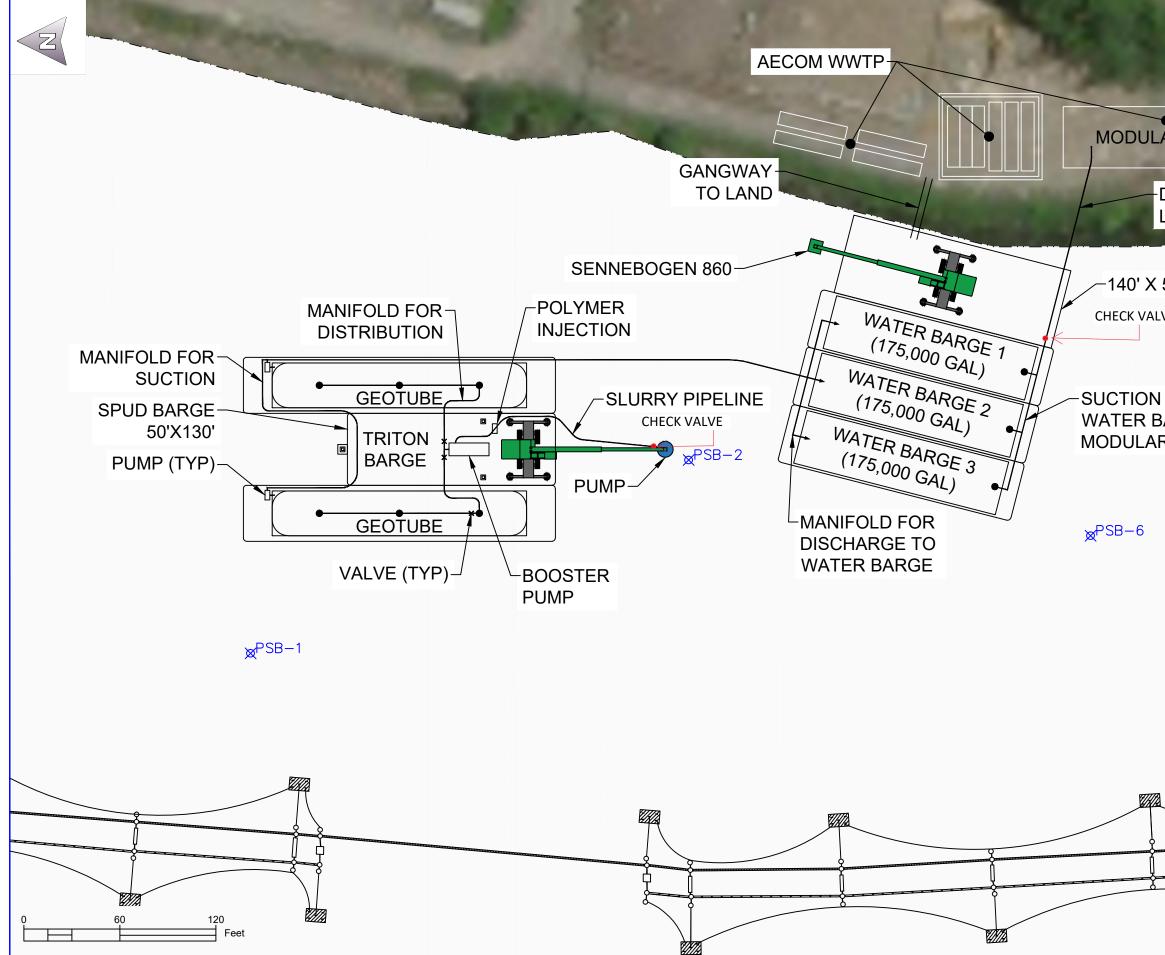
Amherst, NY 14228-2298 / / (* ^O Phone: 716-691-2600 Fax: 716-691-7991				Halli of Custory Accord	n Inna							America
Client Information (Sub Contract Lab)	Sampler.			Lab PM Fische	Lati PM. Fischer, Brian J			Carrier Tracking No(s)	king No(s);	COC No 480-56	COC No: 480-56847.1	
Client Contact Shipping/Receiving	Phone:			E-Mail brian.	n.fischer@t	estamericainc	Com	State of Origin. New York	gin.	Page	Page Page 1 of 1	
Company TestAmerica Laboratories, Inc.					Accreditation	Accreditations Required (See note) NELAP - New York	note).			480-	Job #. 480-171773-1	
Address: 4101 Shuffel Street NW.	Due Date Requested 7/6/2020	;pa				4	Inalysis F	Analysis Requested		Pres	Co	100
City: North Canton	TAT Requested (days):	iys):			VIII) VIII)					8-N C-Z	A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Z.p. OH, 44720					252							P - Na204S Q - Na2SO3
Phone: 330-497-9396(Tel) 330-497-0772(Fax)	# Od			ĺ	. (2 - 2 9 - 1	-	R - Na2SZU3 S - H2SO4 T - TSP Dodecabydrate
Email	#OM											U - Acetone V - MCAA
Project Name Sevenson Environmental Services, Inc.	Project #: 48004527									the construction of the		W - pH 4-5 Z - other (specify)
Site: Sevenson Environmental	#MOSS				ev) as					of Other.	Ľ	
Samole Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=drab)	Matrix (w-water, S=solid. O-wastelo ¹ ,	Field Filtered M/SM monofiel MSM monofiel Perform MS/M					Total Number	UHC Special Ins	JHC Special Instructions/Note:
		X	Preserva	Preservation Code:	X	120 22 22	122 322 B	2012201220	121212	X		
GEOBAG FILTRATE (480-171773-1)	6/26/20	10.00 Fastern		Water	×					2		
FILTER PRESS FILTRATE (480-171773-2)	6/26/20	10:30 Eastern		Water	×					2		
										1		
										627		
										9 7 83		
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyle & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently mantain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation states stopped back to the Eurofins TestAmerica attention in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation states should be brought to Eurofins. TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica.	America places the ownershi /matrix being analyzed, the si rrent to date, return the signed	p of method, a amples must b	nalyte & accre e shipped back tody attesting t	ditation compli- k to the Eurofin to said complic	ince upon out s TestAmerica ance to Eurofir	subcontract labor laboratory or othe is TestAmerica.	atories. This s ar instructions (ample shipment vill be provided.	is forwarded unde Any changes to a	er chain-of-custor	dy. If the laboral us should be bro	lory does not currently ught to Eurofins
Possible Hazard Identification					Sampl	e Disposal (J	A fee may b	e assessed	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	e retained lo	nger than 1	month)
Uncontirmed Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank:	able Rank: 2	2		Specia	Special Instructions/QC Requirements	nt QC Require	Disposal By Lab nents:	y Lab	Archive For	or	Months
Emoty Kit Relinguished by:		Date:		1	Time			Metho	Method of Shipment			
Reinquistion for	Date/Time		60.1	Company	-	Received by			Date/Time	1-30	10 24	Company
Relinquished by	Date/Time			Company	Rec	Received by	1 16	-	Date/Time:		000	Company
Relinquished by.	Date/Time:			Company	Rec	Received by			Date/Time:			Company
Custody Seals Intact: Custody Seal No.: A Vec A No.					Š	Cooler Temperature(s) ^o C and Other Remarks	s) °C and Othe	r Remarks:				
												Ver: 01/16/2019
					15	13 14			8 9		5 6	

7/7/2020

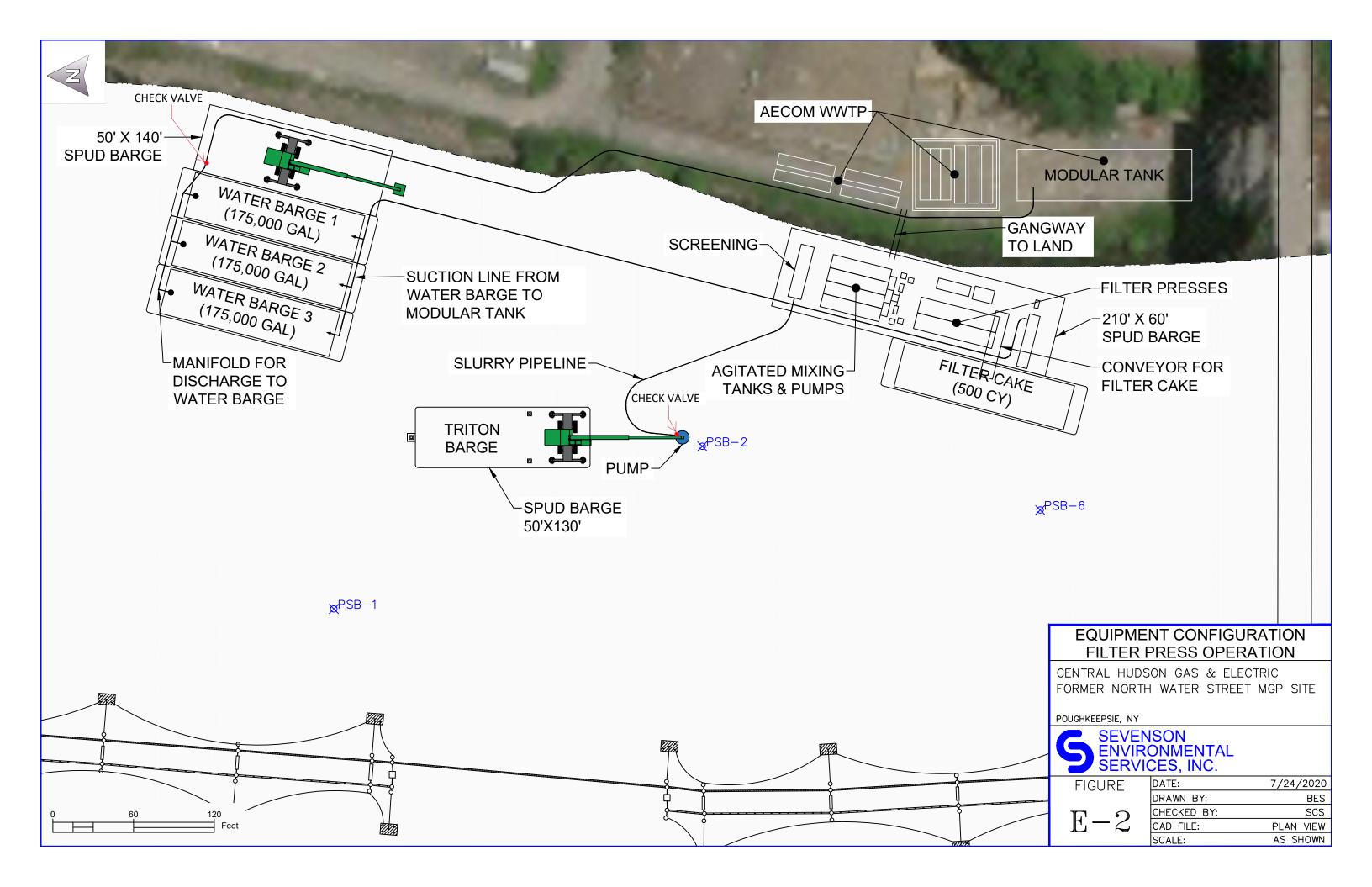
İ

Curofins TestAmerica Canton Sample Receipt Form/Narrative	Login # :
	Cooler unpacked by;
10.0.	
	11/1/1
edEx: 1 st Grd Exp UPS FAS Clipper Client Drop Off TestAmerica Courier	Other
Receipt After-hours: Drop-off Date/Time Storage Location	
 Packing material used: Bubble Wrap Foam Clastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None Cooler temperature upon receipt See Multiple Cooler For IR GUN# IR-10 (CF +0.7 °C) Observed Cooler Temp. C. 9 °C Corrected Cooler IR GUN #IR-11 (CF +0.9 °C) Observed Cooler Temp. C. 9 °C Corrected Cooler Cooler Were tamper/custody seals on the outside of the cooler(s)? If Yes Quantity Yes -Were the seals on the outside of the cooler(s) signed & dated? Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? Yes -Were tamper/custody seals intact and uncompromised? Shippers' packing slip attached to the cooler(s)? Did custody papers relinquished & signed in the appropriate place? Was/were the person(s) who collected the samples clearly identified on the COC? Yes Did all bottle sarrive in good condition (Unbroken)? Could all bottle labels be reconciled with the COC? Were correct bottle(s) used for the test(s) indicated? Sufficient quantity received to perform indicated analyses? Are these work share samples? 	Temp. °C Temp. / 8 °C S No No NA No No No No No No No No No No
	s No NA pH Strip Lot# <u>HC91129</u>
 2. Were all preserved sample(s) at the correct pH upon receipt? 3. Were VOAs on the COC? 4. Were air bubbles >6 mm in any VOA vials? 5. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes 6. Was a LL Hg or Me Hg trip blank present? Yes 	s No s No s No s No
 12. Were all preserved sample(s) at the correct pH upon receipt? 13. Were VOAs on the COC? 14. Were air bubbles >6 mm in any VOA vials? 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes 	s No s No s No s No
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes Yes Yes Contacted PM Date by via Verbal V	s No s No s No s No
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes Contacted PM Date by via Verbal V Concerning	s No s No s No Voice Mail Other
2. Were all preserved sample(s) at the correct pH upon receipt? Yes 3. Were VOAs on the COC? Yes 4. Were air bubbles >6 mm in any VOA vials? Larger than this. 5. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 6. Was a LL Hg or Me Hg trip blank present? Yes Contacted PM Date by via Verbal V Concerning	S No NA S No Voice Mail Other Samples processed by:
2. Were all preserved sample(s) at the correct pH upon receipt? 3. Were VOAs on the COC? 4. Were air bubbles >6 mm in any VOA vials? 5. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes 5. Was a LL Hg or Me Hg trip blank present? 6. Was a LL Hg or Me Hg trip blank present? Contacted PMDatebyvia Verbal V Concerning 7. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 8. SAMPLE CONDITION Sample(s)were received after the recommended hold	Samples processed by:
2. Were all preserved sample(s) at the correct pH upon receipt? Yes 3. Were VOAs on the COC? Yes 4. Were air bubbles >6 mm in any VOA vials? Larger than this. Yes 5. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes Yes 6. Was a LL Hg or Me Hg trip blank present? Yes Yes Contacted PM Date by via Verbal V Yes Concerning	Samples processed by:
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes 17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	Samples processed by:
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes 17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES Yes 18. SAMPLE CONDITION were received after the recommended hold	Samples processed by:
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes 17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	Samples processed by: Samples processed by:
12. Were all preserved sample(s) at the correct pH upon receipt? Yes 13. Were VOAs on the COC? Yes 14. Were air bubbles >6 mm in any VOA vials? Larger than this. 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot # Yes Yes 16. Was a LL Hg or Me Hg trip blank present? Yes 17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES 18. SAMPLE CONDITION Sample(s)	Samples processed by:

Login Sample Receipt Checklist


Client: Sevenson Environmental Services, Inc.

Login Number: 171773 List Number: 1 Creator: Stopa, Erik S


Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	sevenson
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

List Source: Eurofins TestAmerica, Buffalo

Appendix E Check Valve Information

AR TA		FEED				The second secon
	TO AECOM					
50' SF ve	PUD BARGI	=				
LINE ARGE R TAN						
	NOTE: GEOTUBE GEOTUBE 60FT IN D	ES, EACI	H 145			
	-	MENT C				
	CENTRAL H FORMER NO	UDSON GA	AS &	ELEC	TRIC	
	EN\	/ENSON /IRONMI	ΞΝΤΑ	\L		
	FIGURE	DRAWN	BY:		7/24/202 BE SC	S
	E-1	CAD FI	LE:		PLAN VIE	W

The SWL Series Swing Check Valves

• Meets AWWA C-508 Standards (Full Waterway)

- Accepts Air and Oil Cushion
 - Swing Check Valve Solution

Crispin Multiplex Manufacturing Co. • 600 Fowler Avenue • Berwick, PA 18603 • 1-800-247-VALV T: (570) 752-4524 • F: (570) 752-4962 • www.crispinvalve.com • info@crispinvalve.com

SWL SERIES

2

Swing Check Valve

SWL Swing Check Valve

Applications

- Water and Wastewater Systems
- Pump Discharge
- Valve Vaults

Features Include

- Both lever-andweight and outside lever-and-spring designs available.
- Optional Air Cushion (Commercial or Bronze Cylinder Designs available).
- Ductile iron body with Ductile iron disc and 316 ss Seat standard.
- Valve Disc allows "full flow" through the valve
- Buna-N Rubber faced Discs standard.
- Optional double outside levers for weight or spring
- Available in sizes 3" thru 36"

he "SWL" series Swing Check Valve from Crispin Valve is an ideal solution for most check valve applications. Designed completely in-house using advanced 3D modeling and FEA technology, the SWL offers the same Crispin quality that you've come to expect from all of our products.

The SWL is available in Outside Lever/Weight, Lever/Spring, Air Cushion, and Oil Control configurations. <u>Only produced in Ductile Iron with #150 flanged ends</u>, the SWL swing check valve is intended for all swing check applications up to and including a 250 psi operating pressure.

Standard with 316ss seats and available with a variety of industryapproved epoxy coatings, the SWL offers flexibility in tackling hard water and corrosive environments.

Operation

Once pump pressure exceeds the back pressure on the down-stream side of the valve disc, the SWL Swing Check Valve moves the disc out of the flow by displacing the seat disc to the upper portion of the valve body. This creates full flow through the unit for both water and sewage.

Upon pump shut down, the disc will stroke closed when velocity begins to slow and stop. With the incorporation of a rubberized disc face, the resultant drip-tight seating will protect the system from costly leakage.

Design

• Body Seat

The threaded-in 316 stainless steel seat provides firm, water-tight retention in the body. This design can handle repeated stroking of the typical swing check application without vibration or loosening.

• Standard Rubber-Faced Discs

Standard on all sizes, the rubber-faced disc configuration provides drip-tight sealing.

Adjustable Packing

Perfect for standard check valves where expensive maintenance rebuilds are not justified, the adjustable packing allows for fine tuning of sealing joints over time.

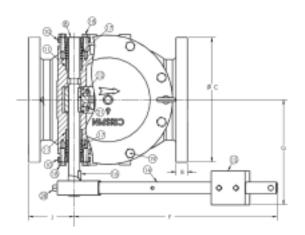
Bronze and Stainless Trim

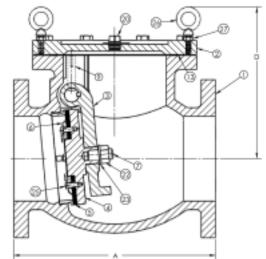
Standard in all units, the SWL's bronze and stainless steel trim provides excellent protection against corrosion.

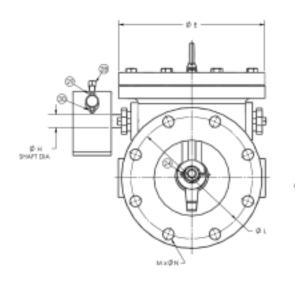
Limit Switches

Mountable on all valves sizes, electric limit switches are available upon customer's request.

• Full Waterway Flow Area

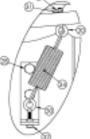

With a flow area that is greater than or equal to the nominal valve size, the SWL swing check valve has a lower head loss characteristic than a Silent Check valve, and can be mounted in both the horizontal and vertical positions.


• Serviceable


The disc and clapper of the SWL can be removed from the valve while it is still in line.

SWL Swing Check Valve

Swing Check Design Features



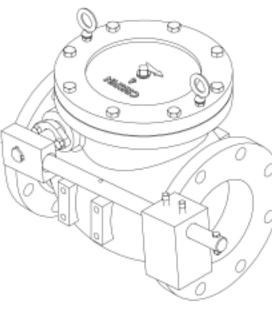
ITEM	DESCRIPTION	MATERIAL
1	BODY/SEAT ASSY	A536 GR.65-45-12 & A351 GR CF8M
2	COVER	A536 GR.65-45-12 DUCTILE IRON
3	DISC ARM	A536 GR.65-45-12 DUCTILE IRON
4	DISC	A536 GR.65-45-12 DUCTILE IRON
5	DISC SEAT	D2000 BUNA-N RUBBER
6	SEAT RETAINER	A240 TYPE 316 S/S
7	STUD	18-8 STAINLESS STEEL
8	PIVOT SHAFT	A276 TYPE 304
9	PIVOT SHAFT PIN	BEARING BRONZE ALLOY 932
10	PACKING GLAND	CARBON STEEL
11	PT SFT BUSHING	BEARING BRONZE ALLOY 932
12	INNER PIVOT	
	SHAFT KEY	A276 TYPE 316 S/S
13	COVER GASKET	KLINGERSIL C-4401
14	LEVER WELDMENT	CARBON STEEL
15	LEVER WEIGHT	ASTM A36
16	OUTER PIVOT	
	SHAFT KEY	A276 TYPE 316
17	PACKING	PTFE IMPREGNATED,
		INTERLOCK BRAID
18	HX HD SCREW	18-8 STAINLESS STEEL
19	HHCS	STEEL, GR 5, ZINC-PLATED
20	PIPE PLUG SQ HD	CARBON STEEL
21	HHCS	18-8 STAINLESS STEEL
22	FINISH HEX NUT	18-8 STAINLESS STEEL
23	FLAT WASHER	18-8 STAINLESS STEEL
24	COTTER PIN	STEEL, ZINC-PLATED
25	HHCS	18-8 STAINLESS STEEL
26	EYEBOLT W/	
	SHOULDER	STEEL, ZINC-PLATED
27	HEX HEAD JAM NUT	STEEL, ZINC-PLATED
28	SQ HD SET SCREW,	CARBON STEEL
29	HHCS	STEEL, GR 5, ZINC-PLATED
30	STD HEX HEAD NUT	STEEL, ZINC-PLATED

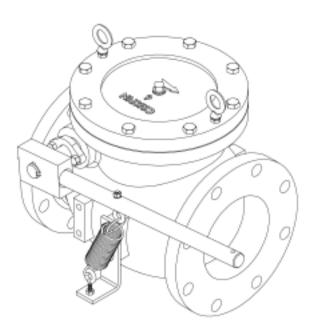
SWL-LW Series Parts List

Optional LS (Lever & Spring) configuration available

#	DESCRIPTION	MATERIAL
30	EYE BOLT	STEEL, ZINC-PLATED
31	LOCK WASHER	STEEL, ZINC-PLATED
32	HEX HEAD NUT	STEEL, ZINC-PLATED
33	SPRING BRACKET	CARBON STEEL
34	EXT. SPRING	MUSIC WIRE

Crispin Valve, 600 Fowler Ave., Berwick, PA 18603 • 1-800-AIR-VALV • T: (570) 752-4524 • F: (570) 752-4962 • WWW.CRISPINVALVE.COM • info@crispinvalve.com


Swing Check Valve


"SWL" Series Dimensions

(both LW—Lever and Weight and LS—Lever and Spring)

SIZE	MODEL #	Α	В	ØC	D	ØE	F	G	ØH	J	ØL	MxØN	WT (lb)
3	SWL31-LW	9.50	.75	7.50	8.20	7.31	12.00	6.80	.75	3.00	6.00	4 x .75	68
4	SWL41-LW	11.50	.94	9.00	9.00	8.06	12.00	7.23	.87	3.75	7.50	8 x .75	98
6	SWL61-LW	14.00	1.00	11.00	10.54	11.42	18.00	9.29	1.00	4.02	9.50	8 x .88	188
8	SWL81-LW	19.50	1.12	13.50	12.50	13.19	18.00	11.10	1.25	5.75	11.75	88. x 8	317
10	SWL101-LW	24.50	1.19	16.00	14.94	16.50	18.00	13.20	1.25	7.25	14.25	12 x 1.00	500
12	SWL121-LW	27.50	1.25	19.00	16.63	18.25	18.00	14.41	1.50	7.75	17.00	12 x 1.00	670
14	SWL141-LW	31.00	1.38	21.00	18.94	21.50	24.75	16.90	2.00	8.50	18.75	12 x 1.12	1000
16	SWL161-LW	36.00	1.44	23.50	21.83	24.50	24.75	18.41	2.00	10.00	21.25	16 x 1.12	1328
18	SWL181-LW	40.00	1.56	25.00	22.80	27.25	30.75	20.91	2.00	11.00	22.75	16 x 1.25	1888
20	SWL201-LW	40.00	1.69	27.50	24.82	29.25	30.75	22.91	2.00	10.00	25.00	20 x 1.25	2200
24	SWL241-LW	48.00	1.88	32.00	28.88	33.50	36.68	26.22	2.75	12.00	29.50	20 x 1.38	3519
30	SWL301-LW	60.00	2.18	38.75	35.63	41.75	37.06	31.91	3.12	15.00	36.00	28 x 1.38	6248
36	SWL361-LW	63.00	2.44	46.00	40.31	48.50	44.00	37.41	3.50	13.50	42.75	32 x 1.62	9135

Notes:

- 1. 250 PSIG Max. Working Pressure
- 2. 500 PSIG Hydrostatic Shell Test Pressure
- 3. Valve will be painted externally with phenolic alkyd primer.

Swing Check Valve

Manufactured in compliance with ANSI/AWWA C512

Date: July, 2016

Specifications for SWL Swing Check Valves

GENERAL:

Check valves shall be ductile iron body, bronze and stainless mounted, full opening swing type. Valve body shall be enlarged to allow disc to swing in the waterway. When valve is full open, body design shall permit a "full flow" thru the valve equal to the nominal pipe diameter. They shall comply with AWWA Standard C-508's latest revision.

RATING:

Check valves shall be rated at 250 psi water working pressure, 500 psi hydrostatic test for structural soundness (3" thru 36"). Seat tightness at rated working pressure shall be in accordance with and fully conform to AWWA C-508.

END CONFIGURATIONS

Check valves shall be furnished with type of end connection as follows: 150# ANSI flanged ends.

MATERIALS:

All Ductile iron shall conform to ASTM-A-536 GR 65-45-12. Castings shall be clean and sound without defects that will impair their service. No plugging or welding of such defects will be allowed.

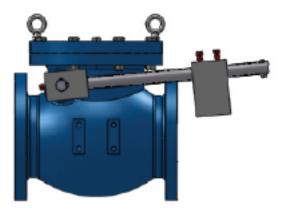
Discs shall be Ductile Iron and rubber-faced for sizes thru 3"-36".

Hinge pins shall be 304 Stainless Steel rotating in bronze bearings.

Bolts shall be electro-zinc plated steel with hex heads and hex nuts in accordance with ASTM A-307 and A-563 respectively.

DESIGN:

Check valves shall be constructed to permit top entry for complete removal of internal components without removing the valve from the line. Gaskets shall be conventional in all sizes 3" -36".


All valves 3"-36" and larger shall have extended hinge pins for addition of levers and springs if required. Valves shall be suitable for installation in either horizontal or vertical position.

PAINTING:

The inside and outside of all valves, together with the working parts except bronze and machined surfaces, shall be coated in accordance with AWWA standards and per the specific project specifications as provided.

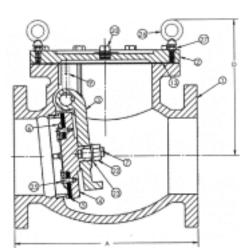
MARKING:

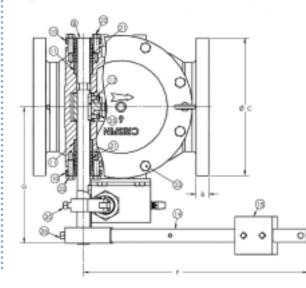
Marking shall be in accordance with AWWA C-508 and shall include size, working pressure, and cast arrow to indicate direction of flow, and name of manufacturer.

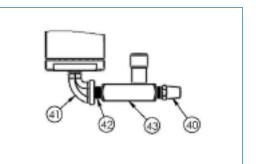
SWL-AC SERIES

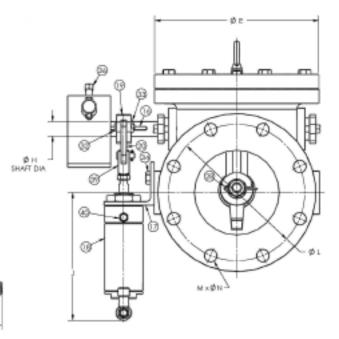
Swing Check Valve w/ Air Cushion

"SWL-AC" Series with Side Air Cushion


A n external side mounted Air Cushion can be added to the standard Lever/Weight Unit to help reduce slamming of the valve. Easily adjustable and fully enclosed, the Aluminum cylinder allows unrestricted opening and cushioned closure of the valve stroke. A cast


bronze cylinder version is also available. Contact the factory for Oil Control Information.


Both Aluminum and Bronze cylinders are available on the SWL-AC.



Swing Check Valve w/ Air Cushion

"SWL" Series W/ Air Cushion Dimensions (LW-AC)

SIZE	MODEL #	Α	В	ØC	D	ØЕ	F	G	ØH	J	ØL	MxØN	WT (lb)
3	SWL31-LW-AC	9.50	.75	7.50	8.20	7.31	12.00	8.50	.75	9.00	6.00	4 x .75	81
4	SWL41-LW-AC	11.50	.94	9.00	9.00	8.06	12.00	9.44	.87	9.75	7.50	8 x .75	107
6	SWL61-LW-AC	14.00	1.00	11.00	10.54	11.42	18.00	11.00	1.00	8.88	9.50	88. x 8	195
8	SWL81-LW-AC	19.50	1.12	13.50	12.50	13.19	18.00	12.81	1.25	7.44	11.75	88. x 8	330
10	SWL101-LW-AC	24.50	1.19	16.00	14.94	16.50	18.00	16.62	1.25	7.88	14.25	12 x 1.0	520
12	SWL121-LW-AC	27.50	1.25	19.00	16.63	18.25	18.00	17.75	1.50	8.50	17.00	12 x 1.0	725
14	SWL141-LW-AC	31.00	1.38	21.00	18.94	21.50	24.75	21.50	2.00	5.50	18.75	12 x 1.12	1085
16	SWL161-LW-AC	36.00	1.44	23.50	21.83	24.50	24.75	23.50	2.00	5.50	21.25	16 x 1.12	1440
18	SWL181-LW-AC	40.00	1.56	25.00	22.80	27.25	30.75	25.00	2.00	5.50	22.75	16 x 1.25	1905
20	SWL201-LW-AC	40.00	1.69	27.50	24.82	29.25	30.75	26.50	2.00	6.63	25.00	20 x 1.25	2275
24	SWL241-LW-AC	48.00	1.88	32.00	28.88	33.50	36.68	31.00	2.75	4.63	29.50	20 x 1.38	3555
30	SWL301-LW-AC	60.00	2.18	38.75	35.63	41.75	37.06	35.50	3.12	3.13	36.00	28 x 1.38	6365
36	SWL361-LW-AC	63.00	2.44	46.00	40.31	48.50	44.00	40.00	3.50	5.88	42.75	32 x 1.62	9365

Notes:

1. 250 PSIG Max. Working Pressure

2. 500 PSIG Hydrostatic Shell Test Pressure

SWL-AC Series Parts List

ITEM	DESCRIPTION	MATERIAL	ITEM	DESCRIPTION	MATERIAL
1	Body & Body Seat Assy	A536 GR 65-45-12	22	HX KD SCREW	18-8 Stainless Steel
		& A351 GR CF8M	23	HHCS	Steel, Gr 5, Zinc-Plated
2	Cover	Ductile Iron A536 Gr 65-45-12	24	Pipe Plug	Carbon Steel
3	Disc Arm	Ductile Iron A536 Gr 65-45-12	25	HHCS	18-8 Stainless Steel
4	Disc	Ductile Iron A536 Gr 65-45-12	26	Finish Hex Nut	18-8 Stainless Steel
5	Disc Seat	D2000 Buna N Rubber	27	Flat Washer	18-8 Stainless Steel
		70 Durometer	28	Cotter Pin	Steel, Zinc-Plated
6	Disc Seat Retainer	AISI 304	29	HHCS	18-8 Stainless Steel
7	Stud	18-8 Stainless Steel	30	Eyebolt w/Shoulder	Steel, Zinc-Plated
8	Pivot Shaft	A276 Type 304	31	Hex Head Jam Nut	Steel, Zinc-Plated
9	Pivot Shaft Pin	Bearing Bronze Alloy 932	32	Clevis Pin	A582 Type 303 S.S.
		(SAE 660)	33	Cotter Pin	Steel, Zinc Plated
10	Packing Gland	Carbon Steel	34	HHCS	Steel, Gr 5, Zinc Plated
11	Pivot Shaft Bushing	Bearing Bronze Alloy 932	35	Sq Hd Set Screw	Carbon Steel
		(SAE 660)	36	Sq hd Set Screw,	Carbon Steel
12	Inner Pivot Shaft Key	A276 TYPE 316		Cup Point	
13	Cover Gasket	Klingersil C-4401	37	HHCS	Steel, GR 5, Zinc-Plated
14	Lever Weldment	Carbon Steel	38	Std Hex Head Nut	Steel, Zinc-Plated
15	Lever Weight	ASTM A36	39	Rod Clevis w/Pin	Steel, Zinc-Plated
16	Outer Pivot Shaft Key	A276 Type 316	40	Mini Air-Intake Filter	Brass
17	Cylinder Bracket	Carbon Steel	41	Street Elbow	Carbon Steel
18	Air Cylinder	Stainless Steel	42	Nipple	Carbon Steel
19	Cylinder Lever	Ductile Iron A536 Gr 65-45-12	43	Flow Control Valve	Carbon Steel
20	Cylinder Link	Carbon Steel			
21	Packing	PTFE impregnated,			
	-	Interlock Braid			

Swing Check Valve w/Air Cushion

Manufactured in compliance with ANSI/AWWA C512

Date: July, 2016

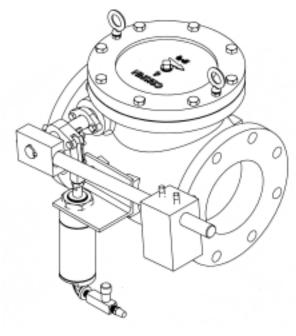
8

Specifications for SWL-AC Swing Check Valves

GENERAL:

Check valves shall be ductile iron body, bronze and stainless mounted, full opening swing type. Valve body shall be enlarged to allow disc to swing in the waterway. When valve is full open, body design shall permit a "full flow" thru the valve equal to the nominal pipe diameter. They shall comply with AWWA Standard C-508's latest revision.

RATING:


Check valves shall be rated at 250 psi water working pressure, 500 psi hydrostatic test for structural soundness (3" thru 36"). Seat tightness at rated working pressure shall be in accordance with and fully conform to AWWA C508.

END CONFIGURATIONS

Check valves shall be furnished with type of end connection as follows: 150# ANSI flanged ends.

MATERIALS:

All Ductile iron shall conform to ASTM-A-536 GR 65-45-12. Castings shall be clean and sound

without defects that will impair their service. No plugging or welding of such defects will be allowed. Valve will be coated externally with phenolic primer (2 Part Epoxy available as an option).

Discs shall be Ductile Iron and rubber faced for sizes thru 3"-36".

Hinge pins shall be 304 Stainless Steel rotating in bronze bearings.

Bolts shall be electro-zinc plated steel with hex heads and hex nuts in accordance with ASTM A-307 and A-563 respectively.

DESIGN:

Check valves shall be constructed to permit top entry for complete removal of internal components without removing the valve from the line.

Gaskets shall be conventional in all sizes 3" -36".

All valves 3"-36" and larger shall have extended hinge pins for addition of external Air Cushions to dampen final valve closure.

> Cushion Cylinders shall be either Aluminum or Bronze per customer request, shall be non-pivoting, and shall be securely attached to the Valve Body. Adjustment of cylinder operation will be by means of a flow control valve.

PAINTING:

The inside and outside of all valves, together with the working parts except bronze and machined surfaces, shall be coated in accordance with AWWA standards and per the specific project specifications as provided.

MARKING:

Marking shall be in accordance with AWWA C-508 and shall include size, working pressure, and cast arrow to indicate direction of flow, and name of manufacturer.